tomcat是我们在web开发过程中会用到的servlet容器,同时也是springBoot内置集成默认的容器
大致意思就是,他看了一个面经,说虚拟内存是 2G 大小,然后他看了我的图解系统 PDF 里说虚拟内存是 4G,然后他就懵逼了。
由于Web应用程序跑在Tomcat工作线程,因此Web应用对请求的处理时间也直接影响Tomcat性能,而Tomcat和Web应用在运行过程中所用到的资源都来自os,因此调优需要将服务端看作是一个整体来考虑。
进程和线程究竟是什么东西?传统网络服务模型是如何工作的?协程和线程的关系和区别有哪些?IO过程在什么时间发生? 在刚刚结束的 PyCon2014 上海站,来自七牛云存储的 Python 高级工程师许智翔带来了关于 Python 的分享《Python中的进程、线程、协程、同步、异步、回调》。 一、上下文切换技术 简述 在进一步之前,让我们先回顾一下各种上下文切换技术。 不过首先说明一点术语。当我们说“上下文”的时候,指的是程序在执行中的一个状态。通常我们会用调用栈来表示这个状态——栈记载了每个调用层级执行到哪
当别人问我们Redis这么快的时候,很多小白都只会简简单单的回答,因为Redis它是基于内存存储的,使用内存存储数据,可以避免频繁的进行写盘操作,大大降低响应时间。这个确实是一个原因,但回答的还是不够面。起码在这里还得回答上高效的数据结构以及IO网络多路复用的设计架构。
(友情提示:本博文章欢迎转载,但请注明出处:hankchen,http://www.blogjava.net/hankchen)
写这个小结主要是因为之前研究Boost.Asio的时候,其内部使用了很多不同的方法来实现异步网络编程 然后就顺便把一些高级的玩意看了一下,也顺便把以前低级的玩意放到一起,哇哈哈。很多东西只是个人的理解,不一定正确
熟悉java多线程的朋友一定十分了解java的线程池,jdk中的核心实现类为java.util.concurrent.ThreadPoolExecutor。大家可能了解到它的原理,甚至看过它的源码;但是就像我一样,大家可能对它的作用存在误解。现在问题来了,jdk为什么要提供java线程池?使用java线程池对于每次都创建一个新Thread有什么优势?
vmstat 命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,MEM内存使用,VMSwap虚拟内存交换情况,IO读写情况。
昨天,分析修复了一个connector的问题。下面开始陈述整个过程,依旧按照之前的陈述思路进行:
扯淡 首先说明这篇博客是文不对题的。起这个名字想法来源自韩寒的《我所理解的生活》,之前看过一个关于这本书的视频,感觉巨牛X,于是就想写一篇《我所理解的性能测试》。虽然是文不对题的,但我就是想用这个名字,在这个残忍的社会,给自己博客文章起个名字这点权利还是有的。 下面我要贴出来的是zee大神的《性能测试面试问题列表》中列出来的性能测试与操作系统方面问题与我自己整理的回答。回答的不一定对,也懒得去改了。就用这些问题与回答来记录我这段时间的努力,来记录我所理解的性能测试吧。 性能测试 1.如何理解TPS 性能指
NameServer在RocketMQ中的角色是配置中心,主要有两个功能:Broker管理、路由管理。因此NameServer上存放的主要信息也包括两类:Broker相关的信息、路由信息。
mysql是多线程结构,包括后台线程和客户服务线程,多线程可以有效利用服务器资源,提高数据库的并发性能。在mysql的并发能力上,主要有有下列参数界定。分别为max_connections,back_log,thread_cache_size,table_open_cache等。
Doris 运行在 Linux 环境中,推荐 CentOS 7.x 或者 Ubuntu 16.04 以上版本,同时你需要安装 Java 运行环境,JDK最低版本要求是8。我们这里使用的是Linux Centos7.9版本,jdk为1.8。
爱因斯坦说过“耐心和恒心总会得到报酬的”,我也一直把这句话当做自己的座右铭,这句箴言在今年也彻底在“我”身上实现了。
用ffmpeg来处理USB摄像头,是前段时间研究视频监控ffmpeg内核的时候搞定的,既然ffmpeg这么牛逼的库可以解析各种音视频,我想处理个本地USB摄像头应该也不是什么难事,果真搜索也是一大堆,当然主要也是因为有个项目的应用需要用到ffmpeg来处理本地USB摄像头,需要拿到每张图片做智能分析,用Qt自带的camera类不大好处理,刚好将ffmpeg的处理流程都搞清楚了,索性直接用ffmpeg来直接处理好了,用上这么强大的解码库,理论上支持各种USB摄像头。本地USB摄像机不需要硬解码,视频流编码类型为 AV_CODEC_ID_RAWVIDEO 像素格式为 AV_PIX_FMT_YUYV422 不经过解码操作直接就可显示。
redis是单线程的(不严谨的讲法的哈),为什么还这么快,很多人相信会回答因为redis是基于内存操作的, 内存的读写速度是非常快的。答到这,逼格还是不够高的,基于内存是一方面,但还有一个关键点是:redis采用了多路复用技术,今天我们就来聊聊这个点。
通过对以下 10 个面试题的分享,助您更好的理解 Node.js 的事件和 EventLoop 相关知识
线程是操作系统能够进⾏运算调度的最⼩单位,它被包含在进程之中,是进程中的实际运作单位,可以使⽤多线程对进⾏运算提速。
一段代码能否把机器硬件性能发挥到极致,我们通常用cpu和IO利用率(本地存储io和网络io)来衡量。
之前文章提到过JNIEnv是线程相关的,即在每一个线程中都有一个JNIEnv指针,每个JNIEnv都是线程专有的,其他线程不能使用本线程中的JNIEnv.
本⽂以爱奇艺开源的⽹络协程库(https://github.com/iqiyi/libfiber )为例,讲解⽹络协程的设计原理、编程实践、性能优化等⽅⾯内容。
现在多核 CPU 是主流。利用多核技术,可以有效发挥硬件的能力,提升吞吐量,对于 Java 程序,可以实现并发垃圾收集。但是 Java 利用多核技术也带来了一些问题,主要是多线程共享内存引起了。目前内存和 CPU 之间的带宽是一个主要瓶颈,每个核可以独享一部分高速缓存,可以提高性能。JVM 是利用操作系统的”轻量级进程”实现线程,所以线程每操作一次共享内存,都无法在高速缓存中命中,是一次开销较大的系统调用。所以区别于普通的优化,针对多核平台,需要进行一些特殊的优化。
本文对hbase集群进行优化,主要涵盖硬件和操作系统,网络通信,JVM,查询,写入,核心服务,配置参数,zookeeper,表设计等多方面。 我们对hbase的应用主要是用户画像,根据自身使用场景做一些优化。难免有片面之处。 一、软硬件优化: 1. 配置内存,cpu HBase的LSM树结构,缓存机制和日志机制对内存消耗非常大,所以内存越大越好。 其中过滤器,数据压缩,多条件组合扫描等场景都是cpu密集型的,所以cpu也要够强悍 2. 操作系统 选择主流linux发行版,JVM推荐用Sun
从本篇开始回顾总结Netty通信框架,尝试为读者揭开它的神秘面纱。Flink内部节点之间的通信是用Akka,比如JobManager和TaskManager之间的通信。而operator之间的数据传输是利用Netty。
这是一篇来自Python世界的文章,但是对整个编程领域还是适用的,多线程虽然让我们处理请求更快,但是也是有天花板的,绿色(微线程micro-thread)线程之类才是解决方案。 多线程软件开发解决了大量的问题,尤其是以网络为中心的应用程序,这些程序需要严苛的性能快速响应用户。不幸的是,多线程并不足以解决大规模并发性的问题。 解决这些问题需要改变编程模型,使用异步事件和基于回调机制。在Druva,我们创建了一个基于python库的名为Dhaga来解决大规模并发,而编程模型不需要重大改变。 软件开发人员生活在一个并发的世界。线程如今是一等公民,今天在开发过程中,特别是当您的应用程序执行密集的网络运营,如同Druva一样的inSync系统(网络安全同步产品)。多线程帮助网络操作的编程代码流变得简单和顺序。当我们的应用程序需要增强的性能或改善其可伸缩性,我们可以增加线程的数量。 但是当需要成千上万规模的并发请求,线程是不够的。 我们发现多线程使用有以下缺点: 1. inSync系统客户端需要大量的文件通过网络RPC调用备份到服务器。开发人员加快速度的典型方法是使用线程。但多线程带来的性能却增加内存和CPU的使用成本;开发人员需要在速度和线程数之间保持一个平衡。 2.我们的服务器需要处理inSync系统与成千上万的客户之间并发连接和通知。为了有效地处理连接,我们使用线程来处理请求。但inSync系统客户的不断增加也意味着我们不得不继续增加线程的数量,从而消耗大量服务器的内存和CPU。 3.我们的Web服务器需要处理成千上万的平行的HTTP请求。大部分工作是在接收和发送的数据网络套接字并将其传给inSync系统的后端。导致大多数的线程等待网络操作。导致C10K问题,当有成千上万的同步请求到Web服务器,为每个请求生成一个线程是相当不可扩展的(Scale)。 异步框架的限制 许多异步框架,包括 Twisted扭曲、Tornado龙卷风和asyncore可以帮助开发人员远离使用线程的流行的方式。这些框架依赖非阻塞套接字和回调机制(类似Node.js)。如果我们按原样使用这些框架,我们Druva代码的主要部分必须重构。这不是我们想要做的事。重构代码会增加开发和测试周期,从而阻止我们达到规模要求。鉴于产品的多个部分需要大规模,我们每个人将不得不重构他们——因此增加一倍或两倍的努力。 为了避免改变如此多的代码,我们不得不离开直接使用现有的框架。幸运的是,我们发现一些有用的工具。 因为我们想要控制在网络I / O的代码执行,我们需要一种将一个线程划分为微线程micro-thread的方法。我们发现greenlets。它提供一种非隐式的微线程调度,称为co-routine协程。换句话说。当你想控制你的代码运行时它非常有用。您可以构建自定义计划的微线程,因为你可以控制greenlets什么时候yield暂停。这对我们来说是完美的,因为它给了我们完全控制我们的代码的调度。 Tornado是一个用Python编写的简单的、非阻塞的Web服务器框架,旨在处理成千上万的异步请求。我们使用它的核心组件,IOLoop IOStream。IOLoop是一个非阻塞套接字I / O事件循环;它使用epoll(在Linux上)或队列(BSD和Mac OS X),如果他们是可用的,否则选择()(在Windows上)。IOStream提供方便包装等非阻塞套接字读和写。我们委托所有套接字操作给Tornado,然后使用回调触发代码操作完成(banq注:非常类似Node.js机制)。 这是一个好的开始,但我们需要更多。如果我们在我们的代码中直接用上面的模块,我们大量的RPC代码将不得不改变,通过greenlets调度RPC,确保greenlets不要阻塞(如果greenlets堵塞,它会堵塞整个线程和其他全部),处理来自tornado的回调功能。 我们需要一个抽象来管理和安排greenlets 以避免让它被外部调用堵塞,这个抽象能够超越线程达到大规模可扩展。这个抽象是Dhaga,它能让应用代码流编程起来像传统同步顺序,但是执行是异步的。 Dhaga(来自印地语,这意味着线程)是我们抽象的一个轻量级线程的执行框架。Dhaga类是来源于greenlet,使用堆栈切换在一个操作系统线程中执行多个代码流。一个操作系统的线程中使用协作调度执行多个dhagas。每当一段dhaga等待时(主要是等待一个RPC调用返回),它yield控制权给父一级(也就是说,是创建它的操作系统级别线程的执行上下文)。然后父一级会调度安排的另一个dhaga准备运行。RPC调用将传递给tornado web服务器异步写入Socket,然后在其返回时注册一个回调,当这个RPC返回时,正在等待的dhaga将被添加到可运行队列中,然后后被父线程拾起。(banq注:类似node.js原理) 我们可以使用Dhaga代替线程
关于性能优化这是一个比较大的话题,在《由12306.cn谈谈网站性能技术》中我从业务和设计上说过一些可用的技术以及那些技术的优缺点,今天,想从一些技术细节上谈谈性能优化,主要是一些代码级别的技术和方法。本文的东西是我的一些经验和知识,并不一定全对,希望大家指正和补充。 在开始这篇文章之前,大家可以移步去看一下酷壳以前发表的《代码优化概要》,这篇文章基本上告诉你——要进行优化,先得找到性能瓶颈! 但是在讲如何定位系统性能瓶劲之前,请让我讲一下系统性能的定义和测试,因为没有这两件事,后面的定位和优化无从谈起。
在 Linux 系统之中有一个核心武器:epoll 池,在高并发的,高吞吐的 IO 系统中常常见到 epoll 的身影。
1.加入redis缓存的方式,判断是否redis中存在?第一次从数据库里面取,放入redis中,第二次的时候直接从redis里面取。明显并发可以上去。吞吐量也可以明显提高。如果商品价格发生变化,及时的维护redis中的缓存。
协程不是系统级线程,很多时候协程被称为“轻量级线程”、“微线程”、“纤程(fiber)”等。简单来说可以认为协程是线程里不同的函数,这些函数之间可以相互快速切换
前两天看到一群里在讨论 Tomcat 参数调优,看到不止一个人说通过 accept-count 来配置线程池大小,我笑了笑,看来其实很多人并不太了解我们用的最多的 WebServer Tomcat,这篇文章就来聊下 Tomcat 调优,重点介绍下线程池调优及 TCP 半连接、全连接队列调优。
原文地址:All you need to know to really understand the Node.js Event Loop and its Metrics 原文作者:Daniel Khan Node.js 是一个基于事件的平台。这意味着在 Node 中发生的一切都是基于对事件的反应。通过 Node 的事件处理机制遍历一系列回调。 事件的回调,这一切都由一个名为 libuv 的库来处理,它提供了一种称为事件循环的机制。 这个事件循环可能是平台中最被误解的概念。当我们提及事件循环监测的主题时,我
nginx 使用的 epoll 是非阻塞的,但不是异步IO。 glibc 的 aio 有 bug , kernel 的 aio 只能以 O_DIRECT 方式做直接 IO , libeio 也是 beta 阶段。epoll 是成熟的,但是 epoll 本身是同步的。Linux 上目前没有像 IOCP 这样的成熟异步 IO 实现。
背景: 211渣硕,电气专业转JAVA后台,看书很少多数是在刷面经,能找到工作实属侥幸,现献上自己的面经,希望能帮助到别人 部分面试结果: 先上总结: 如果实力不够硬建议还是海投,会很累,但机会多一些,我投了200+家,笔试100家左右,面试三四十家,过了7家,那段时间每天少则3场多则7场。 心态一定要稳住,提前批能试就试,过不了也别气馁,毕竟厉害的人很多,就当攒经验了; 感觉上华为小米海康比纯互联网公司的难度要低一些,也是不错的选择 Offer意向书、口头offer统统别信,“hr面不刷人”和“hr面
Java 中的 BIO、NIO和 AIO 理解为是 Java 语言对操作系统的各种 IO 模型的封装。程序员在使用这些 API 的时候,不需要关心操作系统层面的知识,也不需要根据不同操作系统编写不同的代码。只需要使用Java的API就可以了。
系统负载能力浅析 互联网时代,高并发是一个老生常谈的话题。无论对于一个web站点还是app应用,高峰时能承载的并发请求都是衡量一个系统性能的关键标志。像阿里双十一顶住了上亿的峰值请求、订单也确实体现了阿里的技术水平(当然有钱也是一个原因)。 那么,何为系统负载能力?怎么衡量?相关因素有哪些?又如何优化呢? 一. 衡量指标 用什么来衡量一个系统的负载能力呢?有一个概念叫做每秒请求数(Requests per second),指的是每秒能够成功处理请求的数目。比如说,你可以配置tomcat服务器的maxCon
作者:ronaldoliu,腾讯 IEG 后台开发工程师 或许你也听说了,摩尔定律失效了。技术的发展不会永远是指数上升,当芯片的集成度越来越高,高到 1 平方毫米能集成几亿个晶体管时,也就是人们常说的几纳米工艺,我们的半导体行业就踩到天花板了。因为再小下去,晶体管内甚至都快无法通过一个原子了,然后就是不得不面临量子效应,也就是人们常开玩笑说的——玄学,所谓遇事不决,量子力学。 总而言之,我们的计算机硬件技术发展到了瓶颈期了,CPU 的运行速度几乎不会再有太多提升了。并且随着移动互联网的普及和万物互联,
线程池ThreadPoolExecutor在运行的过程中,业务并发量变动,需要不停服务调整线程池的线程数,ThreadPoolExecutor支持动态调整corePoolSize与maximumPoolSize的值。
NIO(Non-blocking I/O,在Java领域,也称为New I/O),是一种同步非阻塞的I/O模型,也是I/O多路复用的基础,已经被越来越多地应用到大型应用服务器,成为解决高并发与大量连接、I/O处理问题的有效方式。 那么NIO的本质是什么样的呢?它是怎样与事件模型结合来解放线程、提高系统吞吐的呢? 本文会从传统的阻塞I/O和线程池模型面临的问题讲起,然后对比几种常见I/O模型,一步步分析NIO怎么利用事件模型处理I/O,解决线程池瓶颈处理海量连接,包括利用面向事件的方式编写服务端/客户端程序。
没有那家卖瓜的会说自己家的不甜,同样,没有哪个开源项目愿意告诉你在对它条件最苛刻的时候压力情况是多少,一般官网号称给你看的性能指标都是在最理想环境下的,毫无参考意义。
引言: 应同学的要求,分享些基础的知识。 没有比Linux更基础了,关键问题来了,你真的认真看了和转发了吗? O(∩_∩)O哈哈~ 要实现对Linux的调优,就需要用到一些Linux系统命令和工具来观察与监控系统的性能。下面介绍几个最常用的Linux调优命令和工具。 1. top命令 top命令经常用来监控Linux的系统状态,如CPU、内存的使用情况。下面通过一个运行中的Web服务器的top监控截图,讲述top视图中各种数据的含义,以及视图中各进程(任务)的字段的排序。 top进入视图,如图4.17所示。
前言:最近开始写小册子,一篇篇来,写完了再整理总结到一起。循序渐进,重点是优先分析libuv的原理。其他的有时间再写,也希望大家一起。
1.由gc引起节点脱离集群 因为gc时会使jvm停止工作,如果某个节点gc时间过长,master ping3次(zen discovery默认ping失败重试3次)不通后就会把该节点剔除出集群,从而导致索引进行重新分配。 解决方法: (1)优化gc,减少gc时间。(2)调大zen discovery的重试次数(es参数:ping_retries)和超时时间(es参数:ping_timeout)。后来发现根本原因是有个节点的系统所在硬盘满了。导致系统性能下降。 2.out of memory错误 因为默认情
本⽂以爱奇艺开源的⽹络协程库(https://www.jintianxuesha.com)为例,讲解⽹络协程的设计原理、编程实践、性能优化等⽅⾯内容。
众所周知,javascript是单线程的,其通过使用异步而不阻塞主进程执行。那么,他是如何实现的呢?本文就浏览器与nodejs环境下异步实现与event loop进行相关解释。
作者:美团点评技术团队 链接:https://zhuanlan.zhihu.com/p/23488863 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
本文由 sugerpocket 首发于 IMWeb 社区网站 imweb.io。点击阅读原文查看 IMWeb 社区更多精彩文章。 众所周知,javascript 是单线程的,其通过使用异步而不阻塞主进程执行。那么,他是如何实现的呢?本文就浏览器与nodejs环境下异步实现与event loop进行相关解释。 浏览器环境 浏览器环境下,会维护一个任务队列,当异步任务到达的时候加入队列,等待事件循环到合适的时机执行。 实际上,js 引擎并不只维护一个任务队列,总共有两种任务 Task(macroTask): s
接下来我们来补充之前AFURLResponseSerialization这一块是如何解析数据的
领取专属 10元无门槛券
手把手带您无忧上云