典型的互联网应用的日志系统,从功能需求上看主要包括收集,存储和分析,以及展示这样三个部分,因此整个系统我觉得也可以按此思路大致可以分为三个部分:
支付(Payment)系统可以很复杂,比如可以和银行打交道,和信用卡系统打交道。如果我们考虑用户在一家电商买东西,在结账的时候,借助电商支持的支付系统(Payment Service Provider)来完成支付行为。
首先我们来看一个企业中比较普遍的现象,当系统发生故障时,运维人员通常关注指标类数据,而研发人员更“钟情“于日志数据,为什么会有这种区别呢?
前面提到,行存储是一个基于磁盘的存储引擎。为了避免IO的高昂开销,存储引擎会缓存一部分页面在内存中,便于随时对其进行检索和更改。存储引擎会对缓存的页面进行筛选、替换和淘汰,保证留存在缓存的页面能够提高整个引擎的执行效率。
作为一个应届毕业生,进入阅文集团,加入到通用平台中心之后,随着日常工作的逐步深入,我渐渐了解阅文的技术体系,其中尤其以腾讯TARS平台最为重要。目前TARS平台承载了阅文内部绝大多数的服务,每日接口调用最大值近百亿,单业务峰值可在数万每秒,近300个业务服务。作为一个新人,我来讲下我从TARS小白到熟练工的历程中整理的一些知识点。
Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
本文讲述了一种分布预写式日志系统Waltz,文中介绍了在实现预写式日志系统时遇到的问题及其解决方案,可以为类似的需求提供一定的启发。
之前有网友说想看架构师升级的文章,所以写了本文。先给本文中架构师做个定义:第一,能力上达到(似乎是废话),第二,公司肯承认,不仅能给架构师的头衔,更能按架构师的标准发工资。
对于程序员来说,架构师是职业发展的一道坎,如果跨过去了,后面就前途无量了,否则可能一直得做着代码coding的事情。本文将从“如何升级”和“平时工作内容”两方面,说下我对架构师的认识。
我之前开发了免费、无广告的聚会小游戏给大家!不需要带桌游实体卡牌,也能在一起玩桌游!也支持线上玩!图片如下。
在 IOT ( 物联网 )中,当我们的一些设备。例如( 监控、传感器等 )需要将收集到的数据和信息进行汇总时,我们就需要一个 API 网关来接收从千百个终端发出的请求,它实现对外统一接口,对内进行负载均衡的功能。极大的方便了 API系统 的开发与维护。如果有需要,API 网关也可以根据各终端使用的不同通信协议来进行协议适配,从而方便应用层进行数据采集和分析。
多活架构(Multi-Active Architecture)是一种设计用于提高系统可用性和容错性的架构模式。它通常用于构建分布式系统或服务,以确保即使在部分组件或节点失效的情况下,系统仍然能够继续提供服务。
本文为联合撰文,作者团队负责携程集团支付账务系统、消费金融账务系统、清结算和对账等工作的的开发、设计和运维工作。
前当当网高级架构师吴英昊对电商搜索引擎的架构进行了深入分享。在演讲中,他首先就电商搜索引擎的特点进行了解析,随后更分享了电商搜索引擎的架构、数据更新、故障恢复等多个方面的内容。 以下为演讲整理 首先,我想说的是电商搜索引擎和普通的搜索引擎有很大的差别,因为电商搜索引擎主要是解决用户要“买什么”,而通用搜索引擎主要是解决用户“搜什么”。比如同样搜索一个词“百年孤独”,电商的搜索肯定是给你推荐这本书的商家,而百度主要是告诉你:《百年孤独》是一本书。 电商搜索引擎的特点 众所周知,标准的搜索引擎主要分成三个大的部
作者:李捷,Elastic首席云解决方案架构师 ELK生态下,构建日志分析系统的选择 说起开源的日志分析系统,ELK几乎无人不晓,这个生态并非是Elastic特意而为,毕竟Elasticsearch的初心是分布式的搜索引擎,被广泛用作日志系统纯粹一个“美丽的意外”,这是社区使用者推动而成。而现在各大云厂商推广自己的日志服务时,也往往将各种指标对标于ELK,可见其影响之广。 但其实,流行的架构中并非只有ELKB,当我们使用ELKB搭建一套日志系统时,除了Elasticsearch, Logstash, Kib
http://groups.google.com/group/dev4server/browse_thread/thread/8a86bb49a561f312
总体而言,Linux操作系统是一个强大、灵活且可定制的操作系统,广泛应用于服务器、嵌入式系统、超级计算机等各种领域。
说起开源的日志分析系统,ELK几乎无人不晓,这个生态并非是Elastic特意而为,毕竟Elasticsearch的初心是分布式的搜索引擎,被广泛用作日志系统纯粹一个“美丽的意外”,这是社区使用者推动而成。而现在各大云厂商推广自己的日志服务时,也往往将各种指标对标于ELK,可见其影响之广。
内容来源:之前作者写了一篇《FunData — 电竞大数据系统架构演进》的文章,传送门:http://t.cn/RdgKWGW 觉得没有深入写出一些深层次的东西。纠结了几个晚上决定重写一篇不一样的文章。本文由IT大咖说(微信id:itdakashuo)整理,经投稿者与嘉宾审阅授权发布。
作者:datonli,腾讯 WXG 后台开发工程师 背景 开发在定位问题时需要查找日志,但企业微信业务模块日志存储在本机磁盘,这会造成以下问题: 日志查找效率低下:一次用户请求涉及近十个模块,几十台机器,查找日志需要登录机器 grep 日志文件。这一过程通常需要耗费 10 分钟以上,非常低效; 日志保存时间短:单机磁盘存储容量有限,为保存最新日志,清理脚本周期清理旧日志文件腾出磁盘空间,比如:现网一核心存储 7 天日志占用了 90%的磁盘空间,7 天前日志都会被清理,用户投诉因日志被清理而得不到解决;
按照了解的很多 PHP/LNMP 程序员的发展轨迹,结合个人经验体会,抽象出很多程序员对未来的迷漫,特别对技术学习的盲目和慌乱,简单梳理了这个每个阶段 PHP 程序员的技术要求,来帮助很多 PHP 程序做对照设定学习成长目标。
原文出处: 黑夜路人 按照了解的很多PHP/LNMP程序员的发展轨迹,结合个人经验体会,抽象出很多程序员对未来的迷漫,特别对技术学习的盲目和慌乱,简单梳理了这个每个阶段PHP程序员的技术要求,来帮助很多PHP程序做对照设定学习成长目标。 本文按照目前主流技术做了一个基本的梳理,整个是假设PHP程序员不是基础非常扎实的情况进行的设定,并且所有设定都非常具体明确清晰,可能会让人觉得不适,请理解仅代表一家之言。(未来技术变化不在讨论范围) 第一阶段:基础阶段(基础PHP程序员) 重点:把LNMP搞熟练(核心是安
在现实的产品设计场景中,我们经常会遇到多个设计方案的选择。例如,App或网页端某个页面的某个按钮的颜色是用蓝色还是红色,是放在左边还是右边?传统的解决方案通常是集体表决或由某位Leader拍板,类似的选择还有很多,从概率上很难保证传统的选择策略每次都是有效的,而ABTest显然是一种更加科学的方法。
曾经写过一些系统设计方面的思考(比如这个和这个),但是最近准备面试,又接触了更多系统设计方面的问题。这里我想简单记录一些典型系统设计问题的思路。通过学习常见的系统,在心中形成一些问题解决的套路,以在思考和分析新问题的时候提供一些既定思路。很抱歉时间关系写得很简略,主要是提示一些思路和方向。
目标 高吞吐量. 支持大量的事件流, 如日志aggregation 优雅的处理巨量数据日志以支持周期性的离线数据加载 低延迟提交 支持分区, 分布式, 实时处理 当数据发送到其它系统时, 需要知道这个
日志系统几乎是每一个实际的软件项目从开发、测试到交付,再到后期的维护过程中极为重要的查看软件代码运行流程、还原错误现场、记录运行错误位置及上下文等的重要依据。一个高性能的日志系统,能够准确记录重要的变量信息,同时又没有冗余的打印导致日志文件记录无效的数据。本文Jungle将用C++设计实现一个日志系统。
总第250篇 2018年 第42篇 背景 美团外卖从2013年11月开始起步,经过数年的高速发展,一直在不断地刷新着记录。2018年5月19日,日订单量峰值突破2000万单,已经成为全球规模最大的外卖平台。业务的快速发展对系统稳定性提出了更高的要求,如何为线上用户提供高稳定的服务体验,保障全链路业务和系统高可用运行,不仅需要后端服务支持,更需要在端上提供全面的技术保障。而相对服务端而言,客户端运行环境千差万别,不可控因素多,面对突发问题应急能力差。因此,构建客户端的高可用建设体系,保障服务稳定高可用,不仅
设计一个拥有上百万用户的系统是很有挑战性的,这将是一个不断优化、持续改进的过程。在本章中,我们先创建一个单用户的系统,然后逐渐将其扩展成可以服务上百万用户的系统。读完本章,你将掌握几个能帮助你破解系统设计面试难题的技巧。
你是否经常遇到线上需要日志排查问题但迟迟联系不上用户上报日志的情况?或者是否经常陷入由于存储空间不足而导致日志写不进去的囧境?本文介绍了美团是如何从0到1搭建高性能终端实时日志系统,从此彻底解决日志丢失和写满问题的。希望能为大家带来一些帮助和启发。
很多开源组件中可以看到 HA 方案就是提升组件的可用性,让系统免于宕机无法服务的方案。
最近几年,互联网产业在政策抑制和市场容量接近饱和的情况下,慢慢地由野蛮生长、争抢客户的增量市场发展模式,进入了一个需要精细化运营,通过优质服务来留住客户的存量市场发展模式。能够通过创新来开辟的业务新赛道的机会和案例已经越来越稀缺。各大厂商纷纷开始高举“降本增效”的大旗,以期能够度过寒冬。
性能监控主要通过数据采集-数据分析-数据展示-故障告警来实现,其中,数据采集是性能监控的第一步,也是最为关键的一步。
导读:随着 K8s 不断更新迭代,使用 K8s 日志系统建设的开发者,逐渐遇到了各种复杂的问题和挑战。本篇文章中,作者结合自己多年经验,分析 K8s 日志系统建设难点,期待为读者提供有益参考。
个人网站的建立 首先,帮忙点击一下我的网站http://www.wenzhihuai.com/ 。谢谢啊,如果可以,GitHub上麻烦给个star,以后面试能讲讲这个项目,GitHub地址https:
在互联网迅猛发展的今天 各大厂发挥十八般武艺的收集用户的各种信息,甚至包括点击的位置,我们也经常发现自己刚搜完一个东西,再打开网页时每个小广告都会出现与之相关联的商品或信息,在感叹智能的同时不惊想 什么时候泄露的行踪。 许多公司的业务平台每天都会产生大量的日志数据。收集业务日志数据,供离线和在线的分析系统使用,正是日志收集系统的要做的事情。 用户的数据除了这种后台默默的收集外,还有各种运行的日志数据和后台操作日志,因此每个业务可以算是一种类型的日志,那稍大点的公司就会有几十种日志类型要收集,而且
日志是开发者用来分析程序和排查问题的重要工具。随着系统架构从早期的单体应用,演变到如今的微服务架构,日志的重要性也逐步提升。除了用日志辅助问题排查,还可以通过日志对微服务请求的全链路进行性能分析,甚至可以它用来解决分布式系统中的一致性问题。与此同时,系统产生的日志量和日志管理难度也显著增加。于是,日志管理工具随之诞生并迭代升级。从最开始登录到跳板机上查看日志,到自建分布式日志中心来统一管理日志流,到云平台厂商提供专门的日志管理服务。开发者只需要在应用中接入SDK将日志回流到日志平台,就可以使用日志平台提供智能检索、数据分析以及链路分析等能力,平台中易用的图形化界面和成熟的数据管理能力极大的提升了开发效率。
原文:http://www.enmotech.com/web/detail/1/735/1.html (复制链接,打开浏览器即可查看)
1.Linux 能够流畅的使用Shell脚本来完成很多自动化的工作;awk/sed/perl 也操作的不错,能够完成很多文本处理和数据统计等工作;基本能够安装大 部分非特殊的Linux程序(包括各种库、包、第三方依赖等等,比如MongoDB/Redis/Sphinx/Luncene/SVN之类的);了解基 本的Linux服务,知道如何查看Linux的性能指标数据,知道基本的Linux下面的问题跟踪等
DNS域名解析 整个过程大体描述如下,其中前两个步骤是在本机完成的,后8个步骤涉及到真正的域名解析服务器:1、浏览器会检查缓存中有没有这个域名对应的解析过的IP地址,如果缓存中有,这个解析过程就结束。浏览器缓存域名也是有限制的,不仅浏览器缓存大小有限制,而且缓存的时间也有限制,通常情况下为几分钟到几小时不等,域名被缓存的时间限制可以通过TTL属性来设置。这个缓存时间太长和太短都不太好,如果时间太长,一旦域名被解析到的IP有变化,会导致被客户端缓存的域名无法解析到变化后的IP地址,以致该域名不能正常解析,这段时间内有一部分用户无法访问网站。如果设置时间太短,会导致用户每次访问网站都要重新解析一次域名。
第一阶段:基础阶段(基础PHP程序员) 重点:把LNMP搞熟练(核心是安装配置基本操作) 目标:能够完成基本的LNMP系统安装,简单配置维护;能够做基本的简单系统的PHP开发;能够在PHP中型系统中支持某个PHP功能模块的开发。 时间:完成本阶段的时间因人而异,有的成长快半年一年就过了,成长慢的两三年也有。 1.Linux: 基本命令、操作、启动、基本服务配置(包括rpm安装文件,各种服务配置等);会写简单的shell脚本和awk/sed 脚本命令等。 2.Nginx: 做到能够安装
熟练使用Linux,熟练安装Linux上的软件,了解熟悉负载均衡、高可靠等集群相关概念,搭建互联网高并发、高可靠的服务架构;
怎样从一位程序员进阶成为一名合格的架构师?这是很多刚刚成为程序员和已经工作三五年的程序员会经常问道的问题。 先来看看大型网站的架构演化路线 初始阶段 应用和数据服务器分离 这一步主要还是把数据
日志是记录系统中各种问题信息的关键,也是一种常见的海量数据。日志平台为集团所有业务系统提供日志采集、消费、分析、存储、索引和查询的一站式日志服务。主要为了解决日志分散不方便查看、日志搜索操作复杂且效率低、业务异常无法及时发现等等问题。
高可用SpringCloud微服务与docker集成实现动态扩容实战
OLTP(联机事务处理系统)以高并发读写为主,数据实时性要求非常高,数据以行的形式组织,最适合面向外存设计的行存储引擎。随着内存逐渐变大,服务器上万亿字节(TB)大小的内存已经很常见,内存引擎面向大内存而设计,提高系统的吞吐量和降低业务时延。OLAP联机数据分析处理系统主要面向大数据量分析场景,对数据存储效率、复杂计算效率的要求非常高。列存储引擎可以提供很高的压缩比,同时面向列的计算,CPU指令高速缓存和数据高速缓存的命中率比较高,计算性能比较好,按需读取列数据,大大减少不必要的磁盘读取,非常适合数据分析场景。openGauss整个系统设计是可插拔、自组装的,并支持多个存储引擎来满足不同场景的业务诉求,目前支持行存储引擎、列存储引擎和内存引擎。
作者:Yomut 原文:https://my.oschina.net/yomut/blog/714497
领取专属 10元无门槛券
手把手带您无忧上云