Flow-IPC 解决了传输大量数据量的挑战,允许程序在不同的处理器核心上同时执行线程。
验证两种各自领域称王的语言(JAVA /PHP),不同语言、不同机制的组合在一起,PHP负责WEB层,Java负责业务和数据逻辑层,真是一对黄金组合(Java+PHP整合=混血新宠儿),发挥各自优势,适合开发B/S企业程序。
Binder 是一种进程间通信机制,基于开源的 OpenBinder 实现;OpenBinder 起初由 Be Inc. 开发,后由 Plam Inc. 接手。
IPC全名为inter-Process Communication,含义为进程间通信,是指两个进程之间进行数据交换的过程。在Android和Linux中都有各自的IPC机制,这里分别来介绍下。
Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源。
余承东认为,当前,Android/Linux 内核代码庞大且冗余,比如 Android 代码就有一亿行,Linux 内核代码也有 2000 万行,很难保证不同终端的体验流畅。鸿蒙 OS 采用全新的微内核设计,拥有更强的安全特性和低时延等特点。微内核设计的基本思想是简化内核功能,在内核之外的用户态尽可能多地实现系统服务,同时加入相互之间的安全保护。微内核只提供最基础的服务,比如多进程调度和多进程通信等。
移动设备的操作系统阵营之一的Android,底层基于Linux内核,中间为Native&Runtime层和Framework层。我们知道Linux本身有着很成熟的IPC(进程间通信)机制,比如管道、消息队列、共享内存、socket、信号和信号量等。然而,Android却使用Binder来作为它的IPC的方案,这是为何呢?接下来,就把我之前学习Binder的心得写下来。
我也经常被咨询Linux C++后台开发的学习路线。然而当谈到Linux C++后台开发时,无论Linux还是C++都是一个很大的话题,聪明的程序员需要学会做减法
Linux 多年来取得的成绩毋庸多言。但最近,reddit 上有人发起了一个话题,想知道 Linux 的内核设计是否已经过时,并得到了一些有趣的答案。 这位 Ronis_BR 的用户提问大致如下: Linux 是在 1992 年启动的,一些特性到现在都没有改变。我猜想最新的操作系统内核设计技术(如果存在…)应该较之前有很大的进步。那 Linux 内核是否已经过时? 与 Windows、macOS、FreeBSD 内核的设计相比,Linux 内核的设计有没有在哪些方面比较先进?(注意,重点是设计的先进,
年前曾在微博上推荐过OffensiveCon 2019大会议题,议题列表与介绍可参见官网(https://www.offensivecon.org/agenda/),很多专注于漏洞挖掘与利用的干货分享,目前只有部分议题ppt公开,通过点击文末的“阅读原文”可打包下载(包含8个议题),包括ppt、paper和code。
在Linux系统编程和运维中,进程间通信(IPC)是一个重要的概念。为了有效地管理和监控这些IPC资源,Linux提供了多种工具和命令,其中lsipc就是其中之一。然而,需要注意的是,标准的Linux发行版中可能并没有直接名为lsipc的命令,但通常我们提到的lsipc是指ipcs命令的一个特定用法或者某个Linux发行版提供的工具,用于列出系统中的IPC设施信息。
---- 新智元报道 编辑:桃子 拉燕 【新智元导读】继此前faker.js开源作者删除所有代码后,近日,开源代码的维护者因反俄给node-ipc库中添加了恶意代码,遭到GitHub社区的强烈谴责。 开发者自毁代码,只为不让俄罗斯人使用。 据Github上发布的一份公告称,一位流行的开源软件的技术专家和维护者故意破坏了他们自己的代码。 他们向非常受欢迎的node-ipc库中添加了恶意代码,用「心脏」表情符号替换了文件。 并将遭到破坏的npm程序库版本称为「新软件」,并非「恶意软件」。 这么做的目
进程间通信有如下的目的:1、数据传输,一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几M之间;2、共享数据,多个进程想要操作共享数据,一个进程对数据的修改,其他进程应该立刻看到;3、通知事件,一个进程需要向另一个或一组进程发送消息,通知它们发生了某件事情;4、资源共享,多个进程之间共享同样的资源。为了做到这一点,需要内核提供锁和同步机制;5、进程控制,有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。
工作中的难点问题正是我们知识技术栈全谱查漏补缺的最佳机遇,有问题不可怕,all in、死磕就完事了,哈哈哈~
华为鸿蒙OS发布已经一周了,在这一周中发生了很多事情,有人对华为路转粉,也有人对华为粉转黑,在时下,只要是华为的任何动作,背后都早已预备好某种正确,当然,所有事先备好的正确,必然不是客观的,所以为了不浪费时间和精力,避开那些争端即可。
本文摘自“ Docker in Action ”一书,在此文中,我将向您展示如何打开对容器之间共享内存的访问。
者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
本文摘自“ Docker in Action ”(Docker实战)一书,将向您展示在容器之间共享内存的方法。
UNIX/Linux 是多任务的操作系统,通过多个进程分别处理不同事务来实现,如果多个进程要进行协同工作或者争用同一个资源时,互相之间的通讯就很有必要了
摘自“Docker in Action”一书,在本文中,我将展示如何在容器之间共享内存空间。
https://github.com/ApolloAuto/apollo/blob/master/docs/quickstart/apollo_1_0_hardware_system_installation_guide.md
操作系统层虚拟化是指通过划分一个宿主操作系统的特定部分,产生一个个隔离的操作执行环境。操作系统层的虚拟化是操作系统内核直接提供的虚拟化,虚拟出的操作系统之间共享底层宿主操作系统内核和底层的硬件资源。操作系统虚拟化的关键点在于将操作系统与上层应用隔离开,将对操作系统资源的访问进行虚报化,使上层应用觉得自己独占操作系统。
这篇文章我酝酿了很久,参考了很多资料,读了很多源码,却依旧不敢下笔。生怕自己理解上还有偏差,对大家造成误解,贻笑大方。又怕自己理解不够透彻,无法用清晰直白的文字准确的表达出 Binder 的设计精髓。直到今天提笔写作时还依旧战战兢兢。
信号量的概念参见这里。 与消息队列和共享内存一样,信号量集也有自己的数据结构: struct semid_ds { struct ipc_perm sem_perm; /* Ownership a
【编者按】Docker是PaaS供应商dotCloud开源的一个基于LXC 的高级容器引擎,源代码托管在 GitHub 上, 基于Go语言开发并遵从Apache 2.0协议开源。Docker提供了一种在安全、可重复的环境中自动部署软件的方式,它的出现拉开了基于云计算平台发布产品方式的变革序幕。 1. 背景 1.1. 由PaaS到Container 2013 年2月,前Gluster的CEO Ben Golub和dotCloud的CEO Solomon Hykes坐在一起聊天时,Solomon谈到想把do
进程间通信(interprocess communication,简称 IPC)指两个进程之间的通信。系统中的每一个进程都有各自的地址空间,并且相互独立、隔离,每个进程都处于自己的地址空间中,因此相互通信比较难,Linux 内核提供了多种进程间通信的机制。
管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
如果你是刀友,那我们就将这个系列当做容器方面的从零单排吧,希望这个系列能够帮助你了解并爱上docker,下周将介绍苏研DCOS v0.5,敬请期待!
「WeOpen Insight」是腾源会推出的「开源趋势与开源洞见」内容专栏,不定期为读者呈现开源圈内的第一手快讯、优质工具盘点等,洞察开源技术发展的风向标,预见未来趋势。 1 社区新闻 1、美国法院判决:未经 OSI 许可的开源是「假开源」! 3 月 17 日 ,OSI(Open Source Initiative,开放源代码促进会 )发文转述了一项来自美国法院的判决,表示未获 OSI 开源许可证许可,而自称「开源」的软件属于虚假广告。但独立技术律师 Kyle E. Mitchell 反驳了 OSI 的
在前面的实战教程中我们经常提到attach这个命令,今天就针对此命令做更深一步的介绍。
在进程通信应用中会用到共享内存,这就涉及到了IPC,与IPC相关的命令包括:ipcs、ipcrm(释放IPC)。IPCS命令是Linux下显示进程间通信设施状态的工具。我们知道,系统进行进程间通信(IPC)的时候,可用的方式包括信号量、共享内存、消息队列、管道、信号(signal)、套接字等形式[2]。使用IPCS可以查看共享内存、信号量、消息队列的状态。
这篇文章讨论如何使用CRIU迁移使用了共享内存的程序,主要讨论其中的前两种共享内存方法,最终介绍一种支持热迁移的C程序共享内存使用方法。
之前一直对 Binder 理解不够透彻,仅仅知道一些皮毛,所以最近抽空深入理解一下,并在这里做个小结。
这是一个用于本机多进程进行 IPC 通讯的库,此库的顶层 API 是采用 ASP.NET Core 的 MVC 框架,其底层通讯不是传统的走网络的方式,而是通过 dotnetCampus.Ipc 开源项目提供的 NamedPipeStream 命名管道的方式进行通讯。本库的优势是可以使用设计非常好的 ASP.NET Core 的 MVC 框架作为顶层调用 API 层,底层通讯采用可提升传输性能的命名管道,如此可以做到不走网络通讯从而极大减少网络端口占用问题和减少用户端网络环境带来的问题
Pod 是一组互相协作的容器,是我们可以在 Kubernetes 中创建和管理的最小可部署单元。同一个 pod 内的容器共享网络和存储,并且作为一个整体被寻址和调度。当我们在 Kubernetes 中创建一个 pod 会创建 pod 内的所有容器,并且将容器的所有资源都被分配到一个节点上。
我们在Linux信号基础中已经说明,信号可以看作一种粗糙的进程间通信(IPC, interprocess communication)的方式,用以向进程封闭的内存空间传递信息。为了让进程间传递更多的信息量,我们需要其他的进程间通信方式。这些进程间通信方式可以分为两种: 管道(PIPE)机制。在Linux文本流中,我们提到可以使用管道将一个进程的输出和另一个进程的输入连接起来,从而利用文件操作API来管理进程间通信。在shell中,我们经常利用管道将多个进程连接在一起,从而让各个进程协作,实现复杂的功能。 传
什么是信号 软中断信号(signal,又简称为信号)用来通知进程发生了异步事件。在软件层次上是对中断机制的一种模拟,在原理上,一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是进程间通信机制中唯一的异步通信机制,一个进程不必通过任何操作来等待信号的到达,事实上,进程也不知道信号到底什么时候到达。进程之间可以互相通过系统调用kill发送软中断信号。内核也可以因为内部事件而给进程发送信号,通知进程发生了某个事件。信号机制除了基本通知功能外,还可以传递附加信息。 收到信号的进程对各种信号有不同的
摘要 Binder是android中一个很重要且很复杂的概念,它在系统的整体运作中发挥着极其重要的作用,不过本文并不打算从深层次分析Binder机制,有两点原因:1是目前网上已经有2篇很好的文章了,2是对Binder机制进行深入底层乃至驱动的分析这一过程相当困难且相当耗时,因此并不适合重复造轮子。本文的角度是对Android的Binder机制从整体和概念上进行分析,能够让大家很快明白到底什么是Binder,Binder是干什么的,Binder和应用开发的关系是什么,总之,这篇文章还是很值得去看一看的。 什
上节和上上节我们分享了Linux进程间通信的管道、消息队列、信号以及信号量的基本原理和实践,文章如下:
PID,IPC,Network等系统资源不再是全局性的,而是属于特定的Namespace。每个Namespace里面的资源对其他Namespace都是透明的。要创建新的Namespace,只需要在调用clone时指定相应的flag。 Linux Namespaces机制为实现基于容器的虚拟化技术提供了很好的基础,LXC(Linux containers)就是利用这一特性实现了资源的隔离。不同Container内的进程属于不同的Namespace,彼此透明,互不干扰。下面我们就从clone系统调用的flag出发,来介绍各个Namespace。
摘要总结:本文介绍了一种基于Linux的进程间通信(IPC)机制,即System V IPC(Inter-Process Communication,进程间通信)中的消息队列(Message Queue,MQ)子系统。该子系统提供了在多个进程之间传递消息的功能,并通过Linux内核中的消息队列实现进程间的同步和通信。本文还介绍了如何使用消息队列实现进程间的同步和通信,以及可能出现的死锁问题。
又一波微内核讨论,同时也见到网上太多的言论,甚至把RT-Thread物联网操作系统归类到微内核行列。所以重新把这篇科普文章发下,并做部分澄清。
本文将和大家推荐一个我所在团队开源的本机多进程通讯 IPC 库,此 IPC 支持使用 JSON 格式进行直接路由通讯,具有使用方便,稳定性高,性能好的优点
目前我们所提到的容器技术、虚拟化技术(不论何种抽象层次下的虚拟化技术)都能做到资源层面上的隔离和限制。
ipcs命令用于报告Linux中进程间通信设施的状态,显示的信息包括消息列表、共享内存和信号量的信息。可以帮助开发人员定位进程间通信中出现的问题。
Linux对Namespace的操作,主要是通过clone、setns和unshare这3个系统调用来完成的,clone创建新进程时,接收一个叫flags的参数,这些flag包括CLONE_NEWNS、CLONE_NEWIPC、CLONE_NEWUTS、CLONE_NEWNET(Mount namespace)、CLONE_NEWPID和CLONE_NEWUSER,用于创建新的namespace,这样clone创建出来新进程之后就属于新的namespace了,后续新进程创建的进程默认属于同一namespace。
领取专属 10元无门槛券
手把手带您无忧上云