目前半导体行业的发展可以用冰火两重天来形容,传统的桌面及移动SOC市场已经基本停止增长了,而云计算成了各大巨头的兵家必争之地,这点笔者在前文《英特尔火线换帅、苹果搅动乾坤,国芯路在何方》已经有过详细论述了。
软件性能分析是达到系统最佳效能的关键,数据科学和机器学习应用程序也是如此。在 GPU 加速深度学习的时代,当剖析深度神经网络时,必须了解 CPU、GPU,甚至是可能会导致训练或推理变慢的内存瓶颈
1 ~ 31的信号为传统UNIX支持的信号,是不可靠信号(非实时的),编号为32 ~ 63的信号是后来扩充的,称做可靠信号(实时信号)。不可靠信号和可靠信号的区别在于前者不支持排队,可能会造成信号丢失,而后者不会。
Linux 首席架构师,当今全球最著名程序员之一 Linus Torvalds 最近在邮件列表中的言论再次引起一片哗然。
https://github.com/google/battery-historian
Streamline是一款由ARM公司制作的终极性能测试利器,可以快速定位手游性能问题,甚至可以直接追溯代码。但Streamline需要自行搭建,确实让不少同行止步,无法体会产品的优势。所以,云测为大家整理了如何快速搭建Streamline,方便各位使用体验。
一张图看懂数据科学 72 核的英特尔 Xeon Phi,数据处理速度赶上 GPU? Linux 4.10 的三大改进之处 GitHub 邀请更多开发者参与其开源指南 每日推荐文章: 如何设置 Lin
本人对一直对高性能网络服务器,分布式存储比较感兴趣,在BAT时也一直从事架构开发,并没有做过机器学习相关工作,平时喜欢阅读分析开源代码,到目前为止已分析完约8套开源代码; 这次趁着Google开源TensorFlow,想往深度学习方向尝试一下,先学习分析下TensorFlow的使用与源码,在查阅资料时,发现本书对工程师背景的人非常有帮助,完全考虑了工程师的思维方式,因为原书作者也是工程师背景,但原书有西班牙语与英文版,不方便扩散阅读,为了使有更多工程师背景的同学看到此书,故努力翻译成中文版,因本人英文水平有
选自arXiv 机器之心编译 参与:吴攀、蒋思源、李亚洲 初学者在学习神经网络的时候往往会有不知道从何处入手的困难,甚至可能不知道选择什么工具入手才合适。近日,来自意大利的四位研究者发布了一篇题为《神经网络初学者:在 MATLAB、Torch 和 TensorFlow 中的快速实现(Neural Networks for Beginners A fast implementation in Matlab, Torch, TensorFlow)》的论文,对 MATLAB、Torch 和 TensorFlow
话说,程序员三大浪漫,操作系统、编译器和图形处理。Rust 语言已经攻陷了其中两大浪漫,操作系统和编译器,那么图形处理呢?Rust 语言还能“浪”起来吗?
4. 高阶张量: 三维及以上维度的数组,如三维张量可以想象为一个立方体,每个元素都有三个索引。 张量运算包括但不限于以下几种:
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
其实前面讲算法的文章,也有提到过。比如适用于双向队列的 deque,以及在合适的条件下运用 bisect 和 heapq 来提升算法的性能。
SA_RESETHAND,如果设置来该标志,则处理完当前信号后,将信号处理函数设置为SIG_DFL行为
相信大家对numpy, Tensorflow, Pytorch已经极其熟悉,不过,你知道JAX吗?
NVIDIA对VPI(视觉编程接口-Vision Programming Interface)做了一个比较详细的介绍,尤其讲解了为什么要用VPI:
1.--no-sandbox ,为通常为沙盒的所有进程类型禁用沙箱。 2.--headless ,在无头模式下运行,即没有UI或显示服务器依赖性。 3.--disable-gpu ,禁用GPU硬件加速。如果软件渲染器不到位,则GPU进程将无法启动。 4.--screenshot,保存已加载页面的屏幕截图。 5.--print-to-pdf,保存已加载页面的pdf文件。 6.--window-size,设置初始窗口大小。提供格式为“800,600”的字符串。 7.--timeout,在指定的毫秒数后发出停止。这将取消所有导航并导致DOMContentLoaded事件触发。 8. --incognito,使用无痕模式打开页面。
导读 在处理某些规模庞大和复杂的数据与计算时,量子计算独有的叠加和纠缠特性在算力方面相比于经典计算表现出强大优势。现阶段,由于量子计算机的研发受限于有效的量子比特数、相干时间长度、量子门操作精度等,对量子计算机的研究焦点进而转向量子模拟器,量子模拟器也因此成为发挥量子优越性和研究量子算法的有效途径。
可以看到各大主流框架基本都支持Python,目前Python在科学计算和数据挖掘领域可以说是独领风骚。虽然有来自R、Julia等语言的竞争压力,但是Python的各种库实在是太完善了,Web开发、数据可视化、数据预处理、数据库连接,爬虫等无所不能,有一个完美的生态环境。仅在数据挖掘工具链上,Python就有Numpy、SciPy、Pandas、Scikit-learn、XGBoost等组件,做数据采集和预处理都非常方便,并且之后的模型训练阶段可以和TensorFlow等基于Python的深度学习框架完美衔接。
自动学习权重的神经元模型-感知机。输出值o和真实值y之间的误差用于调整神经元的权重系数{w_1,w_2,…,w_n}
https://deeplearning4j.org/cn/compare-dl4j-torch7-pylearn
本文介绍在Linux操作系统的发行版本Ubuntu中,配置可以用CPU或GPU运行的Python新版本深度学习库tensorflow的方法。
对于非向量化,我们要求得z的值,必须用到for循环,但是当数据量非常庞大的时候,for循环所用的时间会比较多,这个时候可以使用向量运算来提高速度
这是一个关于mindspore-gl的官方介绍,其定位非常接近于dgl,而且从文章(参考链接3)中的数据来看,mindspore-gl的运算效率还要高于dgl。
【新智元导读】本文来自计算机体系结构专家王逵。他认为,“摩尔定律结束之后,性能提升一万倍”不会是科幻,而是发生在我们眼前的事实。 2008年,《三体2:黑暗森林》里写到: 真的很难,你冬眠后不久,就有六个新一代超级计算机大型研究项目同时开始,其中三个是传统结构的,一个是非冯结构的,另外两个分别是量子和生物分子计算机研究项目。但两年后,这六个项目的首席科学家都对我说,我们要的计算能力根本不可能实现。量子计算机项目是最先中断的,现有的物理理论无法提供足够的支持,研究撞到了智子的墙壁上。紧接着生物分子计算机项目也
数据中心的工作负载量不断改变,不久前这些系统的主要任务是处理储存进来的资料和网页,而如今数据中心却要面对日渐增加的人工智能作业,象是理解语音、文字、图片和影片内容,或是分析大数据以取得更深入的资料。
本文介绍在Anaconda环境中,配置可以用GPU运行的Python新版tensorflow库的方法。
NNabla是一款用于研究、开发和生产的深度学习框架。NNabla的目标是要能在台式电脑、HPC集群、嵌入式设备和生产服务器上都能运行。 安装 安装NNabla很简单: 这条命令将安装NNabla的C
硬件环境: 自己的笔记本电脑 CPU:i5-4210M GPU:NVIDIA Geforce 940M
TensorFlow是Google公司开源的分布式机器学习框架。它的前身是DistBelief,在Google大规模内部使用。TensorFlow最早由Google Brain研究组发起。
在之前的文章里,小枣君说过,行业里通常会把半导体芯片分为数字芯片和模拟芯片。其中,数字芯片的市场规模占比较大,达到70%左右。
在使用Ubuntu或者Windows执行一些复杂数据运算时,需要关注下CPU、GPU以及内存占用量,如果数据运算超出了负荷,会产生难以预测的错误。本文将演示如何用简单地方式,实时监控Ubuntu或者Windows的CPU、GPU以及内存占用量,教会大家如何实时监控电脑状态。
腾讯云正式加入CNCF和Linux基金会,推动CNCF和Linux全球发展;科大讯飞战略合作NVIDIA,携手共推智能语音平台;百度即将发布语音声纹识别系统 Deep Speaker。 Facebo
在使用CUDA加速库时,特别是在使用CUBLAS库进行GPU加速的线性代数运算时,有时我们可能会遇到CUBLAS_STATUS_NOT_INITIALIZED错误。这个错误通常表示CUBLAS库未正确初始化导致的问题。在本篇文章中,我们将深入探讨这个错误的原因,并给出解决方法。
2024年1月3日消息,据外媒WCCFtech报道指出,英伟达(NVIDIA)将恢复中国AI GPU出货,今年第二季度将开始量产H20和其他AI GPU,主要基板由供应商纬创负责。
原文链接:The Good, Bad, & Ugly of TensorFlow 作者:Dan Kuster 译者:刘翔宇 审校:赵屹华 责编:周建丁(zhoujd@csdn.net) 自从TensorFlow半年前发布以来,我们一直使用它来进行日常研究和工程。在此过程中我们也学习到了很多知识。是时候写一些新体会了! 因为TensorFlow上没有很多主观的文章和有用的文档,我必须尽可能地使用我能找到的样例、教程、文档和代码片段。 善 社区参与是最重要的。 当涉及到机器学习时,很容易把注意力集中于技术
我们知道CUDA是由NVIDIA推出的通用并行计算架构,使用该架构能够在GPU上进行复杂的并行计算。在有些场景下既需要使用虚拟机进行资源的隔离,又需要使用物理GPU进行大规模的并行计算。本文就进行相关的实践:把NVIDIA显卡透传到虚拟机内部,然后使用CUDA平台进行GPU运算的实践。
最近在玩树莓派,觉得这个树莓派的启动过程有点意思。所以在收集很多信息之后,个人也进行了一些实验和总结。先看一段原始资料:
OpenCV是计算机视觉领域使用最为广泛的开源库,以功能全面使用方便著称。自3.3版本开始,OpenCV加入了对深度神经网络(DNN)推理运算的支持。在LiveVideoStack线上交流分享中英特尔
Colab全称Colaboratory,即合作实验室,是谷歌的提供的一个在线工作平台,使用Jupyter笔记本环境,完全运行在云端,且重点是提供了免费的K80及以上GPU算力。
选自xcelerit 机器之心编译 参与:蒋思源 RNN 是处理量化金融、风险管理等时序数据的主要深度学习模型,但这种模型用 GPU 加速的效果并不好。本文使用 RNN 与 LSTM 基于 Tenso
今天是918,一个对中国人来说非常特殊的日子。这一天,有些地方可能会拉响警笛,有的地方可能会有一些纪念活动。
前几天,我们刚下发了毕业设计的题目,我选的题目为基于TensorFlow的深度学习与研究,这将会是一个系列文章,截止2020-07我会将所有相关内容用更加通俗易懂的方式发布在公众平台上,我们一块学习,让我们嗨起来~。
如果是深度学习的重度用户,首选的操作系统是Linux,虽然操作门槛高一些(如命令行操作),但Linux的开发环境很友好,可以减少很多依赖包不兼容的问题,可以大大提高效率。Linux的发行版很多,比较常用的的可以安装个包含图形界面及命令行的Ubuntu。
选自Medium 作者:Slav 机器之心编译 参与:Quantum Cheese、Lj Linjing、蒋思源 在用了十年的 MacBook Airs 和云服务以后,我现在要搭建一个(笔记本)桌面了 几年时间里我都在用越来越薄的 MacBooks 来搭载一个瘦客户端(thin client),并已经觉得习以为常了。所以当我涉入深度学习(DL)领域后,我毫不犹豫的选择了当时最新的 Amazon P2 云服务。该云服务不需要预付成本,能同时训练很多个模型,并且还能让一个机器学习模型慢慢地训练自己。 但随着时
微软Windows团队的AI已经公布了˚F IRST DirectML的预览作为后端PyTorch训练ML车型。此版本允许在任何 DirectX12 GPU 和 WSL 上加速 PyTorch 的机器学习训练,释放混合现实计算的新潜力。
近来这篇文章很火:How to build a robot that “sees” with $100 and TensorFlow (作者是Lukas,CrowdFlower创始人) ,中文译本为《
在[061]perfetto使用简介中,介绍了如何使用System Tracing的界面中来抓perfetto trace,这个方式的好处就是不需要连接电脑,可以离线抓取,但是perfetto有其他强大的功能,需要使用连接电脑才能发挥。
Ubuntu 16.04 + cuda9.0 + cudnn7.0 或 Ubuntu 16.04 + cuda8.0 + cudnn5.1
领取专属 10元无门槛券
手把手带您无忧上云