攻击者在获取服务器权限后,会通过一些技巧来隐藏自己的踪迹和后门文件,本文介绍Linux下的几种隐藏技术。
飞凌嵌入式推出的OKT507-C作为一款广受欢迎的开发板拥有丰富的功能接口,而实际上OKT507-C开发板的CPU引脚资源是比较紧缺的,那么它究竟是如何提供如此丰富的接口资源的呢?答案就是IO扩展芯片——TCA6424A。
又到周六了,不过这周有点忙新文章还没有写,为了不跳票,就想着把早期还不错的文章,重新排版修改发一下,因为当时读者很少,现在而言完全可以当作一篇新文章(有种狡辩的意思)...
玄武实验室的Dliv3作品,最后更新于2019年,用Go编写,多级代理工具,功能极强,但是现在基本被各大杀软查杀了(需做好免杀)
在上期,小E理解了什么是“时间管理大师”。实际上,这种将物理硬件分配给多个使用者的技术,叫做“时分复用”。计算机操作系统的任务调度模块,实质上提供的就是将CPU以“时分复用”的方式给不同任务使用的机制。
IO复用是串行的a有问题处理a的,但是a的问题要处理10个小时b就得等待10个小时
本期教程介绍一个Linux终端复用神器Tmux。首先,让ChatGPT来介绍一下什么叫“Linux终端复用”?为什么需要用这个软件?使用场景有哪些?
很多人说BIO不好,会“block”,但到底什么是IO的Block呢?考虑下面两种情况:
IO模型 只关注IO,不关注IO读写完成后的事情。 同步:程序(APP)自己进行读/写操作 异步:由Kernel完成读/写,程序跑起来感觉像没有访问IO,访问的是buffer 阻塞:BLOCKING,一直等待着方法有效的返回结果 非阻塞:NONBLOCKING,调用方法的时候就返回是否读取到,(java中要么返回null,要么返回具体的对象) 所以IO模型有: 同步阻塞:程序(APP)自己读取,调用了方法后一直等待着有效的返回结果 同步非阻塞:程序(APP)自己读取,调用方法的瞬间就给出是否读取到的返回结
哈哈,反正我在面试时候经常会问候选人这个问题,这个问题其实是对redis内部机制的一个考察,可以牵扯出好多涉及底层深入原理的一些列问题。
在上一篇文章里我们介绍了 tomcat io 主要包含那些 items,在这里我们主要介绍tomcat io 的基础-多路复用。tomcat 服务器(tomcat7以上)默认使用 java NIO 模型,NIO 不仅仅需要 java 语言上的支持,同时还离不开各种操作系统对于多路复用的支持(linux,windows,mac 等等),所以 tomcat的NIO 是建立在操作系统基础之上的。
在这篇博客中,我们将探讨Linux底层的几种IO(输入/输出)方式,为鸿蒙开发者提供一个清晰的理解。本文将详细介绍阻塞IO、非阻塞IO、I/O多路复用、信号驱动IO及异步IO等概念,旨在帮助开发者优化鸿蒙应用性能。关键词:鸿蒙OS、Linux、IO模型、阻塞非阻塞、IO多路复用、性能优化。
I/O是input/output的缩写,表示计算机与外接设备之间的数据传输。最常见的I/O类型有磁盘I/O、网络IO。IO和CPU比起来是非常低效的,为了保障应用程序的运行效率,Linux支持多种IO模型。
章节目录 I/O复用 IO多路复用 多路复用-select、epoll select epoll 优缺点总结 linux 更改文件描述符大小的命令 - 面试会问 I/O复用 什么是I/O复用 I/O复用 解决的是并发性请求的问题。 处理多个并发请求,要产生多个I/O流来进行系统内核数据的读取。 常用的两种处理方式是串行,前一个阻塞,后面无法继续进行处理、并行处理请求-实现最大并发和吞吐。 I/O复用定义为:一个socket作为复用来完成整个I/O流的请求链接建立,处理请求则采用多线程。 IO多路复用 普通版
一、linux网络IO模型:linux将所有外部设备都当作文件处理,对一个文件的读写操作通过调用内核命令执行,返回一个file descriptor(fd 文件描述符),而对于一个socket也有对应的socketFD,描述符是一个数字,指向内核中的一个结构体(文件路径,数据区属性等)。
Linux/Unix五种I/O模型 内容来源,侵删。 游双-《Linux高性能服务器编程》 牛客网-Linux高并发服务器开发 ---- 阻塞-blocking 调用者调用了某个函数,然后等待这个函数返回,在这期间什么都不做,不停的去检查这个函数有没有返回,应用程序必须等这个函数返回才能进行下一步的动作。 即,针对阻塞I/O执行的系统调用可能因为无法立即完成而被操作系统挂起,直到等待的时间发生为止,才可以继续执行下一步的操作。 可能被阻塞的系统调用包括accept、send、rec
在之前的一篇文章中,作者在配置了SO_REUSEPORT选项之后,使得应用的性能提高了数十倍。现在介绍socket选项中如下几个可以提升服务端性能的选项:
很多的小伙伴,被java IO 模型,搞得有点儿晕,一会儿是4种模型,一会儿又变成了5种模型。
服务器端编程,经常需要构造高性能的网络应用,需要选用高性能的IO模型,这也是通关大公司面试必备的知识。
前面介绍了NIO中的buffer和Channel,而我们将NIO主要的使用场景还是在网络环境中,在具体介绍之前我们需要了解下IO的模型
Java里面的IO模型种类较多,主要包括BIO,NIO和AIO,每个IO模型都有不一样的地方,那么这些IO模型是如何演变呢,底层的原理又是怎样的呢? 本文我们就来聊聊。
本文从操作系统的角度来解释BIO,NIO,AIO的概念,含义和背后的那些事。本文主要分为3篇。 第一篇讲解BIO和NIO以及IO多路复用 第二篇讲解AIO和文件IO 第三篇讲解在这些机制上的一些应用的实现方式,比如nginx,nodejs,Java NIO等 到底什么是“IO Block” 很多人说BIO不好,会“block”,但到底什么是IO的Block呢?考虑下面两种情况: 用系统调用read从socket里读取一段数据 用系统调用read从一个磁盘文件读取一段数据到内存 如果你的直觉告诉你,这两种都算
很多对技术有追求的读者朋友,做到一定阶段后都希望技术有所精进。有些读者朋友可能会研究一些中间件的技术架构和实现原理。比如,Nginx为什么能同时支撑数万乃至数十万的连接?为什么单工作线程的Redis性能比多线程的Memcached还要强?Dubbo的底层实现是怎样的,为什么他的通信效率非常高?
从基础讲起,IO的原理和模型是隐藏在编程知识底下的,是开发人员必须掌握的基础原理,是基础的基础,更是通关大厂面试的必备知识。
学习任何东西之前都得知道他是为什么而产生的。任何一个设计,或技术。都是为了解决某个或多个问题而产生的。即BIO到NIO到多路复用再到epollo 再到netty网络编程框架。今天我们来看看这个演进的过程。
目标主机是Linux系统,目标主机防火墙有严格的限制,只允许80端口的流量进入。我们拿到了目标主机的Webshell并且拿到了SSH的账号密码。但是我们不能通过22端口远程连接,必须得利用80端口做端口复用连接。
写这个小结主要是因为之前研究Boost.Asio的时候,其内部使用了很多不同的方法来实现异步网络编程 然后就顺便把一些高级的玩意看了一下,也顺便把以前低级的玩意放到一起,哇哈哈。很多东西只是个人的理解,不一定正确
清·俞樾《湖楼笔谈》六:“盖诗人用意之妙,在乎深入显出。入之不深,则有浅易之病;出之不显,则有艰涩之患。”
Linux有Linux kernal,我们的客户端,进行连接,首先到达的是Linux kernal,在Linux的早期版本,只有read和write进行文件读写。我们使用一个线程/进程 进行调用read和write函数,那么将会返回一个文件描述符fd(file description)。我们开启线程/进程去调用read进行读取。因为socket在这个时期是blocking(阻塞的),遇到高并发,就会阻塞,也就是bio时期。
Windows 上切换窗口以及任务桌面的快捷键非常多,而且触摸板支持手势切换最近应用,但是缺少一个像 Linux 上面的那种切换同一个应用的不同窗口快捷键,在 Linux 下可以使用 Alt + `` 来切换打开的两个浏览器窗口或者多个文件管理器窗口,不用在所有的任务窗口中来回切换,但是Windows` 上原生并不支持这种快捷键。
在 Linux 系统之中有一个核心武器:epoll 池,在高并发的,高吞吐的 IO 系统中常常见到 epoll 的身影。
文章目录 🚗 🚗Linux嵌入式开发 | 汇编驱动LED(1) 🚗 🚗初始化IO 🚗 🚗STM32 🚗 🚗使能GPIO时钟 🚗 🚗设置IO复用 🚗 🚗配置GPIO 🚗 🚗使用GPIO 🚗 🚗I.MX6ULL 🚗 🚗使能GPIO时钟 🚗 🚗设置IO复用 🚗 🚗配置GPIO 🚗 🚗配置GPIO功能 🚗 🚗Linux嵌入式开发 | 汇编驱动LED(1) 🚀🚀之前我们一直都是在介绍Linux的使用,接下来就开始进入真正的Linux嵌入式开发了,我们的第一个实验就是来使用汇编代码来驱动我们的LED灯,相信很
Linux 的内核将所有外部设备都看做一个文件来操作(一切皆文件),对一个文件的读写操作会调用内核提供的系统命令,返回一个file descriptor(fd,文件描述符)。而对一个socket的读写也会有响应的描述符,称为socket fd(socket文件描述符),描述符就是一个数字,指向内核中的一个结构体(文件路径,数据区等一些属性)。
linux系统也是一种应用,它是基于计算机硬件的一种操作系统软件。当我们接收一次网络传输,计算机硬件的网卡会从网络中将读到的字节流写到linux的buffer缓冲区内存中,然后用户空间会调用linux对外暴露的接口,将linux中的buffer内存中的数据再读取到用户空间。这一次读操作就是一次IO。同样写也是这样的。
因为项目需要,接触和使用了Netty,Netty是高性能NIO通信框架,在业界拥有很好的口碑,但知其然不知其所以然。
前言: 在虚拟化场景下,libvirt会为每个qemu进程,也就是一台虚拟机,创建对应的cgroup,用来限制这台虚拟机的资源使用。这章讨论一下cgroup对内存的限制、回收能力对虚拟机的影响。 Centos7使用Linux 3.10。Ubuntu1604使用Linux 4.4。这章主要分析这两个版本的kernel的能力对比。 分析: 1,使用场景 在内存复用的场景下,会使用到cgroup的内存限制能力。举例来说,Host上有内存32G,每台Guest分配4G,那么可以启动8台Guest。如果内存超分配
系列文章:http://www.jianshu.com/p/594441fb9c9e
场景:内网渗透中,搭建隧道时,服务器仅允许指定的端口对外开放。利用端口复用可以将3389或22等端口转发到如80端口上,以便外部连接。
I/O基础 1、java1.4之前,java对I/O支持不完善,存在以下问题: 没有数据缓冲区,I/O性能存在问题。 没有C或者C++的channel概念,只有输入输出流。 同步式阻塞式I/O通信,通常会导致通信线程被长时间阻塞。 支持的字符集有限,硬件可移植性不好。 2、Linux网络I/O模型 Linux内核将所有外部设备都看作一个文件来操作,对文件的操作都会调用内核提供的系统命令,返回一个fd(文件描述符)。 描述符就是一个数字,它指向内核中的一个结构体(文件路径,数据区等属性)。 fd演示:
从JDK 7版本开始,Java新加入的文件和网络io特性称为nio2(new io 2, 因为jdk1.4中已经有过一个nio了),包含了众多性能和功能上的改进,其中最重要的部分,就是对异步io的支持,称为Java AIO(asynchronous IO)。 因为AIO的实施需充分调用OS参与,IO需要操作系统支持、并发也同样需要操作系统的支持,所以性能方面不同操作系统差异会比较明显。所以本文也附带介绍了Linux 2.6及以后版本新增的AIO特性(因为这跟Java AIO是对应关系)。 Java AIO
User space(用户空间)和 Kernel space(内核空间)。Linux里面这么设计的目的主要是为了安全,即使用户空间崩溃了,内核也不受影响。所以在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必须由用户态模式切换至内核态模式,通过系统调用访问硬件设备。
阻塞与非阻塞主要是程序等待消息通知时的状态角度来说的。阻塞调用是指调用结果返回之前,当前线程会被挂起,一直处于等待消息通知,不能够执行其他业务。
不是白白浪费了 CPU 的资源吗? 官方解释说,因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。
之前的面试有问到主线程在 ActivityThread 里初始化 Looper 后调用了 Looper.loop() 这个死循环为什么不会阻塞主线程,当时回答因为在 Looper.loop() 方法里调用了 MessageQueue.next() 方法,这个 next() 中调用了nativePollOnce() ,这个本地方法最终实现是 android_os_MessageQueue_nativePollOnce ,因为这里的 IO 机制采用 epool ,当它没有消息时会调用 wait() 函数释放 CPU 进入休眠等待,当有消息来临会通过管道写入来通知唤醒。后面百度了一下 epool 函数,然后对比其他 IO 模型做一个笔记,首先说 IO 是什么, IO 就是 InputStream 和 OutputStream 的缩写,输入和输出的意思,传统的我们通过字节流或字符流来操作流,此时是同步阻塞 IO 模型,后面更新的Java NIO 是同步非阻塞 IO 模型
当用户线程调用了 read 系统调用,内核(kernel)就开始了 IO 的第一个阶段:准备数据。很多时候,数据在一开始还没有到达(比如,还没有收到一个完整的Socket数据包),这个时候 kernel 就要等待足够的数据到来。
你是否曾经有想过这个问题,我们的一台 web 服务器最多能连接多少个客户端,或者说是服务多少个用户?是不是说,无论用户数量有多少,只要 CPU 和内存足够,就能支持?
1.linux系统中一切皆文件当有文件 当有一个请求过来的時候就通过3次握手就会和内核创建连接关系,此时Tomcat中的启动的的端口监控就会检测到内核中的文件标识符 fd 此时由linux提供的API socket就会应用程序通过accept()去监控到对应的文件,然后启用线程read(fd)去获取socket的文件流。应用程序读根据文件标识符去读取文件流的过程也就是IO
操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。
领取专属 10元无门槛券
手把手带您无忧上云