. 经典的服务器结构概述(中) 今天将和大家详细探讨分服模型,本文结构如下: 1模型描述 分服模型是游戏服务器中最典型,也是历久最悠久的模型。其特征是游戏服务器是一个个单独的世界。每个服务器的帐号是独
User limits – limit the use of system-wide resources.
可以看到,当前节点内存碎片率为226893824/209522728≈1.08,使用的内存分配器是jemalloc。
本文介绍了多进程模型在游戏服务器端开发中的实践,重点讲解了如何利用多进程模型实现游戏服务器的负载均衡、服务状态管理、无缝扩展和容灾备份等方面的技术和实现方式。
目前市场上的虚拟化技术种类很多,例如moby(docker)、LXC、RKT等等。在带来方便应用部署和资源充分利用的好处的同时,如何监控相应Container及其内部应用进程成为运维人员不可避免遇到的新情况。UAV.Container从虚拟化技术的基础原理和Linux操作系统的内核特性出发,得到Container容器和内部进程的各维度监控数据,使无论是虚拟机或物理机运维人员,还是业务运维人员角度,都能得到合适的监控维度。
参加Unix/Linux相关高级研发职位时,是否经常会被文档,单机允许最大进程数、线程数和Socket连接数,而你却感到束手无措呢?本文给你一个最为详细的答案。
谈到让Go程序监控自己进程的资源使用情况,那么就让我们先来谈一谈有哪些指标是需要监控的,一般谈论进程的指标最常见的就是进程的内存占用率、CPU占用率、创建的线程数。因为Go语言又在线程之上自己维护了Goroutine,所以针对Go进程的资源指标还需要加一个创建的Goroutine数量。
Redis 是一种内存数据库,将数据保存在内存中,读写效率要比传统的将数据保存在磁盘上的数据库要快很多。所以,监控 Redis 的内存消耗并了解 Redis 内存模型对高效并长期稳定使用 Redis 至关重要。
《天天爱消除》服务器已经在外网稳定运行四年多了,日积月累服务器方面出现了一些问题。主要包括内存,强校验性能,异步开发效率,登录等问题。本文记录这些问题的解决方案和优化效果。
自接触 linux 后,大家所受的教育就是 ulimit是最便捷的内核优化途径,事实也确实如此。
最近遇到一个非常有趣的问题。其中有一组HAProxy,频繁出现问题。登录上服务器,cpu、内存、网络、io一顿猛查。最终发现,机器上处于TIME_WAIT状态的连接,多达6万多个。
ECS配置 CPU: 1核 内存: 1 GiB 操作系统: CentOS 7 64位 当前使用带宽: 1Mbps
我们知道redis的数据都保存在内存中,如何高效利用内存变得尤为重要。这里主要从内存消耗、管理内存的原理与方法、内存优化技巧三个方面来讲述如何高效实现内存的存储。今天仅描述内存消耗相关知识。
哈哈,反正我在面试时候经常会问候选人这个问题,这个问题其实是对redis内部机制的一个考察,可以牵扯出好多涉及底层深入原理的一些列问题。
IO多路复用技术把多个IO的阻塞复用到同一个select的阻塞上,使得系统在单线程的情况下可以同时处理多个客户端请求。
本篇内容包括 1. 内存消耗分析 2. 管理内存的原理与方法 3. 内存优化技巧
在对MySQL 8.0.26 vs GreatSQL 8.0.25的对比测试过程中,有一个环节是人为制造磁盘满的场景,看看MGR是否还能正常响应请求。
从 Linux 内核 2.6.25 开始,CGroup 支持对进程内存的隔离和限制,这也是 Docker 等容器技术的底层支撑。
最近看到篇好文章《IO多路复用》,记得早期学习时,也去探索过select、poll、epoll的区别,但后来也是没有及时记录总结,也忘记了,学习似乎就是在记忆与忘记中徘徊,最后在心中留下的火种,是熄灭还是燎原就看记忆与忘记间的博弈
在开发游戏服务器程序的过程中,好像大家都默认使用Mysql, 如果有性能问题,大不了再加个Memcached, 或者干脆使用Redis来做数据库。
IBM有个家伙做了个测试,发现切换线程context的时候,windows比linux快一倍多。进出最快的锁(windows2k的 critical section和linux的pthread_mutex),windows比linux的要快五倍左右。当然这并不是说linux不好,而且在经过实际编程之后,综合来看我觉得linux更适合做high performance server,不过在多线程这个具体的领域内,linux还是稍逊windows一点。这应该是情有可原的,毕竟unix家族都是从多进程过来的,而 windows从头就是多线程的。
缓存是提高服务性能的关键,同时也是防止后端服务雪崩的良药,缓存应用比较广泛的主要是memcached或者redis,而redis甚至还有扩展为集群版本的codis,但本质上还是将key哈希之后路由到集群中某台机器上存储,也就是单key只能存在于单台机器。这种情况下,如果有热点key存在,即使是分布式缓存,仍然可能会因为流量过大导致单机网卡过载而无法正常工作。
Redis 利用了多路 I/O 复用机制,处理客户端请求时,不会阻塞主线程;Redis 单纯执行(大多数指令)一个指令不到 1 微秒,如此,单核 CPU 一秒就能处理 1 百万个指令(大概对应着几十万个请求吧),用不着实现多线程(网络才是瓶颈)。
一般 Unix 系统中,用户态的程序通过malloc()调用申请内存。如果返回值是 NULL, 说明此时操作系统没有空闲内存。这种情况下,用户程序可以选择直接退出并打印异常信息或尝试进行 GC 回收内存。然而 Linux 系统总会先满足用户程序malloc请求,并分配一片虚拟内存地址。只有在程序第一次touch到这片内存时,操作系统才会分配物理内存给进程。具体我们可以看下如下demo:
这个文件记录着比较详细的内存配置信息,使用 cat /proc/meminfo 查看。
文章比较长,需要一些耐心才能看完 并发模型简介 并发:一个人同一时间应对多件事的能力 并行:一个人同一时间处理多件事的能力(显然一个人同一事件不能处理多件事,单核CPU不具备并行能力) 可以理解为并行是并发的一种特殊情况 并发模型的核心是为了提高提高CPU利用率,提高服务器应对大量请求,海量数据处理的能力,单核CPU性能已经难以发展,各大厂商都在通过增加CPU个数来达到硬件处理能力的提高(摩尔定律),随之而来在编程语言方面衍生出各个模型(其实就是处理问题的思路)用来压榨硬件的性能,以使自己的系统并发能力得到
多路-指的是多个socket连接,复用-指的是复用一个线程。多路复用主要有三种技术:select,poll,epoll。epoll是最新的也是目前最好的多路复用技术。
为了支持这些特性,Linux namespace 实现了 6 项资源隔离,基本上涵盖了一个小型操作系统的运行要素,包括主机名、用户权限、文件系统、网络、进程号、进程间通信。
pendingIntent 功能上来讲 是延迟执行的Intent,首先来看看延迟为什么需要延迟,某些场景下 我们并不能立马拿到交互结果需要等待一段时间才可以,比如通知点击,弹窗提醒,消息通知的最常用的就是pendingIntent。
别小看这两个东西,特别是 Reactor 模式,市面上常见的开源软件很多都采用了这个方案,比如 Redis、Nginx、Netty 等等,所以学好这个模式设计的思想,不仅有助于我们理解很多开源软件,而且也能在面试时吹逼。
Java 凭借着自身活跃的开源社区和完善的生态优势,在过去的二十几年一直是最受欢迎的编程语言之一。步入云原生时代,蓬勃发展的云原生技术释放云计算红利,推动业务进行云原生化改造,加速企业数字化转型。
1、根据java的内存模型会出现内存溢出的内存有堆内存、方法区内存、虚拟机栈内存、native方法区内存; 2、一般说的OOM基本都是针对堆内存; 3、对于堆内存溢出主的根本原因有两种 (1)app进程内存达到上限 (2)手机可用内存不足,这种情况并不是我们app消耗了很多内存,而是整个手机内存不足 4、而我们需要解决的主要是app的内存达到上限 5、对于app内存达到上限只有两种情况 (1)申请内存的速度超出gc释放内存的速度 (2)内存出现泄漏,gc无法回收泄漏的内存,导致可用内存越来越少 6、对于申请内存速度超出gc释放内存的速度主要有2种情况 (1)往内存中加载超大文件 (2)循环创建大量对象 7、一般申请内存的速度超出gc释放内存基本不会出现,内存泄漏才是出现问题的关键所在 8、内存泄漏常见场景 (1)资源对象没关闭造成的内存泄漏(如: Cursor、File等) (2)全局集合类强引用没清理造成的内存泄漏(特别是 static 修饰的集合) (3)接收器、监听器注册没取消造成的内存泄漏,如广播,eventsbus (4)Activity 的 Context 造成的泄漏,可以使用 ApplicationContext (5)单例中的static成员间接或直接持有了activity的引用 (6)非静态内部类持有父类的引用,如非静态handler持有activity的引用 9、怎么对内存进行优化呢 三个方向 (1)为应用申请更大内存,把manifest上的largdgeheap设置为true (2)减少内存的使用 ①使用优化后的集合对象,比如SpaseArray; ②使用微信的mmkv替代sharedpreference; ③对于经常打log的地方使用StringBuilder来组拼,替代String拼接 ④统一带有缓存的基础库,特别是图片库,如果用了两套不一样的图片加载库就会出现2个图片各自维护一套图片缓存 ⑤给ImageView设置合适尺寸的图片,列表页显示缩略图,查看大图显示原图 ⑥优化业务架构设计,比如省市区数据分批加载,需要加载省就加载省,需要加载市就加载失去,避免一下子加载所有数据 (3)避免内存泄漏 编码规范上: ①资源对象用完一定要关闭,最好加finally ②静态集合对象用完要清理 ③接收器、监听器使用时候注册和取消成对出现 ④context使用注意生命周期,如果是静态类引用直接用ApplicationContext ⑤使用静态内部类 ⑥结合业务场景,设置软引用,弱引用,确保对象可以在合适的时机回收 建设内存监控体系: 线下监控: ①使用ArtHook检测图片尺寸是否超出imageview自身宽高的2倍 ②编码阶段Memery Profile看app的内存使用情况,是否存在内存抖动,内存泄漏,结合Mat分析内存泄漏 线上监控: ①上报app使用期间待机内存、重点模块内存、OOM率 ②上报整体及重点模块的GC次数,GC时间 ③使用LeakCannery自动化内存泄漏分析 10、真的出现低内存,设置一个兜底策略 低内存状态回调,根据不同的内存等级做一些事情,比如在最严重的等级清空所有的bitmap,关掉所有界面,直接强制把app跳转到主界面,相当于app重新启动了一次一样,这样就避免了系统Kill应用进程,与其让系统kill进程还不如浪费一些用户体验,自己主动回收内存
内存映射 概念 : " 内存映射 “ 就是在 进程的 ” 用户虚拟地址空间 " 中 , 创建一个 映射 , " 内存映射 " 有
大量TimeoutException,说明当前redis服务节点上已经堆积了大量的连接查询,超出redis服务能力,再次尝试连接的客户端,redis 服务节点直接拒绝,抛出错误。
Redis的高并发和快速原因 1.redis是基于内存的,内存的读写速度非常快;
返回此进程是否正在运行。它还检查PID是否已被另一个进程重用,在这种情况下返回False。
自从写 Flink 系列文章,收到了太多读者的私信,希望我不断更新完善 Flink 专栏,为此,土哥还专门创建了一个文档,用来记录粉丝和读者在使用 Flink 组件时遇到的典型问题。
总第247篇 2018年 第39篇 一、背景 Kerberos 是一种网络认证协议,其设计目标是通过密钥系统为客户端、服务器端的应用程序提供强大的认证服务。 作为一种可信任的第三方认证服务,Kerberos是通过传统的密码技术(如:共享密钥)执行认证服务的,被Client和Server同时信任。KDC是对该协议中第三方认证服务的一种具体实现,一直以来都是美团点评数据平台的核心服务之一,在Hive、HDFS、YARN等开源组件的权限认证方面有着广泛的应用。该服务将认证的密钥事先部署在集群的节点上,集群或者新
内核使用cgroup对进程进行分组,并限制进程资源和对进程进行跟踪。内核通过名为cgroupfs类型的虚拟文件系统来提供cgroup功能接口。cgroup有如下2个概念:
当别人问我们Redis这么快的时候,很多小白都只会简简单单的回答,因为Redis它是基于内存存储的,使用内存存储数据,可以避免频繁的进行写盘操作,大大降低响应时间。这个确实是一个原因,但回答的还是不够面。起码在这里还得回答上高效的数据结构以及IO网络多路复用的设计架构。
最近开始学习Python自动化运维,特记下笔记。 学习中使用的系统是Kali Linux2017.2,Python版本为2.7.14+ 因为在KALI里面没有自带psutil模块,需要使用pip进行安装
这个文档描述了Chromium支持的不同线程模型,包括它的渲染器进程,以及现有模型实现的问题。 概述 网页内容已经发展到包含大量在浏览器内运行的活跃代码的地步,使得许多网站更像应用程序而非文档。这种变
上一周我有幸观看了高级架构师李国讲师的直播,内容是关于 Java 内存问题排查和解决。
在服务器运维过程中,经常需要对服务器的各种资源进行监控,例如:CPU的负载监控,磁盘的使用率监控,进程数目监控等等,以在系统出现异常时及时报警,通知系统管理员。本文介绍在Linux系统下几种常见的监控需求及其shell脚本的编写。
领取专属 10元无门槛券
手把手带您无忧上云