linux SIGABRT_NFKB信号通路自己写的程序启动时偶尔会被SIGABRT信号杀死。故查看下SIGABRT的用法。SIGABRT是中止一个程序,它可以被捕捉,但不能被阻塞。处理函数返回后,所有打开的文件描述符将会被关闭,流也会被flush。程序会结束,有可能的话还会coredump。当程序调用abort(3)时,该进程会向自己发送SIGABRT信号。所以,SIGABRT一般用于信号中一些关键的处理,assert失败时也
好,看完上面这些处理函数,其实这几个函数真的就是对信号集进行操作而已,而不会对具体信号有什么动作。 别急
在之前讲解驱动的时候,也讲到信号这个话题,大家可以参考一下之前的文章(linux 异步通知《Rice linux 学习笔记》)
版权声明:本文为博主原创文章,转载请注明博客地址: https://blog.csdn.net/zy010101/article/details/83931740
信号(Signal):信号是在软件层次上对中断机制的一种模拟,通过给一个进程发送信号,执行相应的处理函数。
生活中信号随处可见,我们的生活离不开信号。就比如过红路灯,看见绿灯亮的信号,我们就可以过马路了;听见闹钟响了,我们知道时间到了;看见别人脸色不好,我们就知道他有心事…所以信号在生活中随时可以产生(与我们的动作是异步的):
我们也介绍了core term两种默认操作,core在执行信号后会形成一份core文件(默认是关闭的,因为原本core文件的后缀是pid,运行出错后会创建core文件,导致磁盘空间不足),该文件里存储了出错原因,可以再gdb调试时进行使用。
如果表达式执行结果为成功时返回0,当参数 signal_spec 没有指定有效值时返回1。
而在应用系统开发中,我们常用的方式就是消息队列和套接字两种方式。在程序中写了一个死循环,运行时,常使用ctrl+c来中断进程。突然软件卡死了,我们无法关闭,这时,你知道使用kill -9 pip来结束进程。这些基本的操作常识性操作,背后就使用的“信号量"和应用程序发生通信。
ctrl+c
程序启动时会打印进程号,同时有系统signal信号捕捉程序,会将程序退出的所有能捕捉的信号都捕捉并打印,然后退出。
而在应用系统开发中,我们常用的方式就是消息队列和套接字两种方式。在程序中写了一个死循环,运行时,常使用 ctrl+c来中断进程。突然软件卡死了,我们无法关闭,这时,你知道使用kill -9 pip来结束进程。这些基本的操作常识性操作,背后就使用的“信号量"和应用程序发生通信。
当我们使用kill命令发送或者在终端按下ctrl+c时,我们编写的中断处理函数就会收到中断信号
用户输入命令,在Shell下运行一个前台进程,用户键盘输入 Ctrl C (2号信号)则会产生一个硬件中断,被OS获取,解释成为信号,发送给目标前台进程,前台进程收到信号之后,引起进程退出。
生活中有各种各样的信号,比如:闹钟、红绿灯、上下课铃声……我们可以知道信号产生时对应的要做些什么,幼儿园的小朋友也明白红灯停、绿灯行的道理。 但是,人是怎么识别出这些信号的呢?人是只有通过认识,才能产生行为:有人通过教育的手段让我们在大脑里记住了红绿灯属性及其对应行为。 但是,当信号产生时,我们并不是总能及时去处理这个信号。信号的发生是随时的(异步),但是我们去处理信号并不都是即时的。因为,我们在信号来临时可能会有其他更重要的事情要做(优先级更高的事情),所以从信号发生到信号被处理中间会有一个时间窗口,当然我们在未处理这个信号时需要将这个信号记录下来,等能处理时再处理。 当我们处理信号时,处理信号的方式也是有所不同的(不同的信号有不同的处理方式,不同的人对对同一个信号的处理方式也可能不同,相同的人对相同的信号在不同的场景下处理信号方式也可能不同)。处理信号的方式大致分为以下三种:
相同: 都在 缓存内核 中 读写 , 先进先出 ,不支持 lseek 之类文件定位操作
生活中的信号:红绿灯,手机的来电通知等。 为什么这些是信号呢?因为我们知道这些信号的意义代表着什么。 例如:红绿灯 有人教育过我们,让我们的大脑记住了红绿灯属性对应的行为。 但是,我们就算知道这个信号,也不一定要立刻去处理,因为可能正在做另一间更重要的事情。 所以我们也会有对应的三个动作: 默认动作(看到红灯停),自定义动作(看到红灯不是立刻停下,而而是后退一步或者是其他操作),忽略动作(看到红灯不停)。
生活中类似信号的概念也不少,例如上课铃声响,就是信号的发出,我们听到上课铃声,就是接收到信号,我们快速回到教室上课就是对信号做出处理。那么我们是怎么认识这些信号的呢?那必定是有人教我们,然后我们记住了。而且我们不单单要认识信号,还要识别信号,知道信号的处理方法!
1、Nginx 下如何正确的做日志切分 今天发现有个 Nginx 日志 rotation 出来大小是 0,很奇怪,按公司的业务场景来说,这是不可能的。 瞅了下前同事留下来的 rotation 脚本,看到了这么两行,也是他们当时 rotation 的方案: cp tracklog.ooxx.com.access.log ${log_date_dir}/tracklog.ooxx.com.access.log.${log_name_date} > tracklog.ooxx.com.access.log
signal包的核心是使用signal.signal()函数来预设(register)信号处理函数,如下所示:
从信号产生到信号保存,中间经历了很多,当操作系统准备对信号进行处理时,还需要判断时机是否 “合适”,在绝大多数情况下,只有在 “合适” 的时机才能处理信号,即调用信号的执行动作。关于信号何时处理、该如何处理,本文中将会一一揭晓
本文介绍了Linux信号处理的基础知识,包括信号的来源、信号的发送与接收、信号的默认处理、信号的捕捉和处理、信号的屏蔽与解除、以及多线程环境中信号的处理方法。
不难看出上面的死循环在代码层面是永远无法结束程序的,那是否还有别的办法?对于死循环来说,最好的方式就是使用Ctrl+C对其进行终止。
信号(signal)是一种软件中断,它提供了一种处理异步事件的方法,也是进程间惟一的异步通信方式。在Linux系统中,根据POSIX标准扩展以后的信号机制,不仅可以用来通知某种程序发生了什么事件,还可以给进程传递数据。
这篇文章要讨论的是目前一个非常热门的话题:渗透无线网络以及如何防止无线网络被入侵。WiFi通常都是网络环境中的一个薄弱环节,因为WiFi信号可以在范围内的任何一个地方被任何一个人捕捉到,而且只要有正确的工具以及合适的软件(例如Kali Linux),很多无线路由器中存在的安全漏洞都是可以被攻击者轻松利用的。 接下来,我们将会给大家介绍目前最热门的十大WiFi入侵工具,这些工具可以帮助我们测试无线网络环境中存在的潜在安全问题。 1. Aircrack-ng 官方网站:【传送门见原文处】 使用教程:【传送
注:阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作
首先区分一下Linux信号跟进程间通信中的信号量,它们的关系就犹如老婆跟老婆饼一样,没有一毛钱的关系。
我们的一个系统在父进程退出后子进程偶尔出现不能正常的退出问题,这篇文章就是记录解决这个问题的过程。在unix系统上我们通过fork函数产生一个新的进程,这个新产生的进程我们称为子进程,调用fork函数的进程则是父进程。
和很多程序员打过交道,这些程序员可能熟知for遍历的好几种写法,但是却对写出来的程序部署的环境一无所知。我敢打赌,在spring boot出现之后,已经很少有程序员知道tomcat到底是怎么运行的了。对于他们来说,运行一个jar包就完事了。
SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump,现在我们来验证一下。
trap命令是Shell内建命令,用于指定在接收到信号后将要采取的动作。常见的用途是在脚本程序被中断时完成清理工作。
我们说过:信号可能不会被立即处理,而是在合适的时候进行处理。那么这个合适的时候到底是什么时候?!
Linux信号在Linux系统中的地位仅此于进程间通信,其重要程度不言而喻。本文我们将从信号产生,信号保存,信号处理三个方面来讲解信号。
python 自带的 信号量 可以作为计时装置参与超时异常检测,支持 Linux,Windows 支持不佳
周末面试碰到一个面试题,题目是: 在MMO游戏中,服务器采用Linux操作系统,网络通信与游戏逻辑处理进程一般是分离的。 例如:GameSvr进程处理游戏逻辑,TCPSvr进程处理网络通信。Linux操作系统提供了很多机制可以实现GameSvr和TCPSvr进程之间的数据通信。请您列出两种你认为最好的机制来,并为主(最好)次(次佳)描述他们实现的框架,优缺点对比和应用中的注意事项。 答案:Linux下进程通信 一、进程间通信概述 进程通信有如下一些目的: A、数据传输:一个进程需要将它的数据发送给另一个进程
进程是通过fork系列的系统调用(fork、clone、vfork)来创建的,内核(或内核模块)也可以通过kernel_thread函数创建内核进程。这些创建子进程的函数本质上都完成了相同的功能——将调用进程复制一份,得到子进程。(可以通过选项参数来决定各种资源是共享、还是私有。)
多线程调试的主要任务是准确及时地捕捉被调试程序线程状态的变化的事件,并且GDB针对根据捕捉到的事件做出相应的操作,其实最终的结果就是维护一根叫thread list的链表。上面的调试命令都是基于thread list链表来实现的,后面会有讲到。
信号是 Linux 进程间通信的最古老的方式。信号是软件中断,它是在软件层次上对中断机制的一种模拟。
1 SIGHUP 挂起进程 2 SIGINT 终止进程 3 SIGQUIT 停止进程 9 SIGKILL 无条件终止进程 15 SIGTERM 可能的话终止进程 17 SIGSTOP 无条件停止进程,但不是终止进程 18 SIGSTP 停止或暂停进程,但不终止
SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump,我们来验证一下
在观看本博客之前,建议大家先看一文搞懂Linux信号【上】。由于上一篇博客篇幅太长,为了更好的阅读体验,我拆成了两篇博客。那么接下来,在上一篇的基础上,我们继续学习Linux信号部分。本篇我们主要谈论信号保存和信号处理。
约定:对gdb的命令,如果有缩写形式,会在第一次出现的时候小括号内给出缩写,比如运行命令写成run(r);本文中尖括号< >用来表达一类实体,比如<program>表示这个地方可以放置程序;中括号[]表示括号中的内容是可写可不写,比如[=<value>],表示“=<value>”可以有也可以没有(<value>本身又是一类实体);“|”表示或的关系。
一 线程间同步 同步:相互之间配合完成一件事情 互斥:保证访问共享资源的完整性(有你没我) POSIX 线程中同步:使用信号量实现 信号量 : 表示一类资源,它的值表示资源的个数 对资源访问: p操作(申请资源) [将资源的值 - 1] .... V操作(释放资源) [将资源的值 + 1] 1.定义信号量 sem_t sem ; 2.初始化信号量 int sem_init(sem_t *sem, int pshared, unsigned int value); 参数: @sem 信号量 @pshared 0:线程间使用 @value 初始化的信号量的值 返回值: 成功返回0,失败返回-1 3.P操作 int sem_wait(sem_t *sem); 4.V操作 int sem_post(sem_t *sem); 二 进程间通信(进程间数据交互) (1)传统进程间通信方式 [1]无名管道 [2]有名管道 [3]信号 (2)System 5 IPC对象进程间通信方式 [1]消息队列 [2]共享内存 [3]信号灯集 (3)socket通信 (4)Android系统中增加Binder进程间通信方式 Linux 支持以上所有进程间通信方式 三 管道进程间通信 (1)无名管道 特点: 只能用于具有亲缘关系进程间通信(具有亲缘关系的进程具有数据拷贝动作(复制父进程创建子进程)) int pipe(int pipefd[2]); 功能:创建一个无名管道 参数: @pipefd 获取操作无名管道的文件描述符 pipefd[0]:读无名管道 pipefd[1]:写无名管道 返回值: 成功返回0,失败返回-1 (2)管道读写规则 读端存在 ,写管道 ---->只要管道没有满,都可以写入数据到管道 读端不存在,写管道 ---->此时写管道没有意义,操作系统会发送SIGPIPE杀死写管道的进程 写端存在, 读管道 ---->此时管道中读取数据,管道中没有数据,读阻塞 写端不存在,读管道 ---->此时管道中读取数据,管道中没有数据,此时不阻塞,立即返回,返回值0 (3)有名管道 特点:可以用于任意进程间通信,它是一种特殊的文件,在文件系统存在名字, 而文件中存放的数据是在内核空间,而不是在磁盘上 1.创建一个有名管道文件 int mkfifo(const char *pathname, mode_t mode); @pathname 有名管道存在的路径 @mode 有名管道的权限 返回值: 成功返回0,失败返回-1 2.打开有名管道文件 open 如果有名管道的一端以只读的方式打开,会阻塞,直到另一端以写(只写或读写)的方式打开 如果有名管道的一端以只写的方式打开,会阻塞,直到另一端以读(只读或读写)的方式打开 3.读写操作 read /write 4.关闭管道文件 close(fd); 四 信号 信号是异步进程间通信方式 进程对信号的响应方式: <1>忽略 SIGKILL 和 SIGSTOP 不能忽略 <2>捕捉 当进程收到信号,此时执行的信号处理函数 <3>默认 大部分信号对进程的默认操作方式都是杀死进程 子进程状态发生改变的时候,操作系统向父进程发送SIGCHLD,默认对它处理方式是忽略 typedef void (*sighandler_t)(int); sighandler_t signal(int signum, sighandler_t handler); 功能:设置进程对信号处理方式 参数: @signum 信号的编号 @handler SIG_IGN : 忽略信号 SIG_DFL : 使用默认处理方式 函数名 : 捕捉方式处理 返回值: 成功返回handler,失败返回SIG_ERR 练习: 如何进行不阻塞,不轮训方式回收僵尸态子进程 2.在进程中设置一个定时器 unsigned int alarm(unsigned int seconds); 参数: @seconds 定时的时间,以秒为单位 注意: 一旦定时时间完成,操作系统就会向进程发送SIGALRM信号 A进程: 读文件,写管道 A进程结束条件:文件没有数据可读 B进程: 读管道,写文件 B进程结束条件:在
题图 by wahno from Instagram 前言 最近在学习 Go 语言,遵循着 “学一门语言最好的方式是使用它” 的理念,想着用 Go 来实现些什么,刚好工作中一直有一个比较让我烦恼的问题,于是用 Go 解决一下,即使不在生产环境使用,也可以作为 Go 语言学习的一种方式。 先介绍下问题: 组内有十来台机器,上面用 cron 分别定时执行着一些脚本和 shell 命令,一开始任务少的时候,大家都记得哪台机器执行着什么,随着时间推移,人员几经变动,任务也越来越多,再也没人能记得清哪些任务在哪些
操作系统中的经典定义: 进程:资源分配单位。 线程:调度单位。 操作系统中用PCB(Process Control Block, 进程控制块)来描述进程。Linux中的PCB是task_struct结构体。
本文讲述了如何使用Go语言实现一个具有定时任务、分布式、守护进程、信号处理、文件锁、后台服务等功能的框架。通过使用gotorch,开发者可以方便地实现各种复杂的后台任务,同时具有易用性、高性能和扩展性。
要对一个信号进行处理(除了无法捕捉的SIGKILL和SIGSTOP),需要为其注册相应的处理函数,通过调用signal()函数可以进行注册。
这是100个命令的第7篇文章,主要关于进程的管理命令以及你应该知道关于进程的基本原理,相对于命令的理解,应该更加注重对于进程本身的理解。
1.数字计算 declare -i num=10 while [ $num -ne 0] do num=num-1 done
领取专属 10元无门槛券
手把手带您无忧上云