性能测试中当我们尝试使用 Linux 命令(如 nproc 或 lscpu )了解服务器CPU架构和性能参数时,我们经常发现我们无法正确解释其结果,因为我们混淆CPU、物理核、逻辑核概念等术语。
当我们试着通过 Linux 命令 nproc 和 lscpu 了解一台计算机 CPU 级的架构和性能时,我们总会发现无法正确地理解相应的结果,因为我们会被好几个术语搞混淆:物理 CPU、逻辑 CPU、虚拟 CPU、核心、线程和 Socket 等等。如果我们又增加了超线程(不同于多线程),我们就会开始不知道计算机里面到底有多少核心,我们搞不明白为什么像 htop 这样的命令会在我们认为买的是一台单核计算机上返回拥有 8 个 CPU 的结果。这样的情况一片混乱。
这两年多以来,我的本职工作重心一直是在 x86 Linux 系统这一块,从驱动到中间层,再到应用层的开发。
Linux容器中用来实现“隔离”的技术手段:Namespace。 Namespace实际上修改了应用进程看待整个计算机“视图”,即它的“视线”被操作系统做了限制,只能“看到”某些指定的内容。对于宿主机来说,这些被“隔离”了的进程跟其他进程并没有区别。
cgroups(control groups,控制组群) 是 Linux 内核的一个功能,用来限制、控制与分离一个进程组的资源(如CPU、内存、磁盘输入输出等)。它是由 Google 的两位工程师进行开发的,自 2008 年 1 月正式发布的 Linux 内核 v2.6.24 开始提供此能力。cgroups到目前为止,有两个大版本, 即 v1 和 v2 。
在前面的几篇文章中,我们重点分析了如果通过fork, vfork, pthread_create去创建一个进程或者线程,以及后面说了在内核层面do_fork的实现。目前为止我们已经了解到一个进程是如何创建的。
中断是计算机体系结构中的一个重要概念,用于处理器响应异步事件。中断设计对于提高计算机系统的性能和响应能力至关重要。下面详细讲解中断的工作原理、类型、中断处理流程以及中断设计的关键组件,并附上逻辑示意图。
为了支持这些特性,Linux namespace 实现了 6 项资源隔离,基本上涵盖了一个小型操作系统的运行要素,包括主机名、用户权限、文件系统、网络、进程号、进程间通信。
一.0,1、文本信息和字符编码 所有的信息在计算机中都是以0、1及其组合形式存在。文本信息也不例外。文本信息是以人类容易理解的方式来呈现信息。 计算机是在美国诞生的,英文26个字母加上其他符号只有128个,只用7个bit便可以完全表示所有符号。用8个bit,及一个byte来表示一个符号的方式就叫做ascii编码。对应的有ascii码表。 比如说要在计算机中表示"i love you"这个信息,采用ascii编码方式,那么在计算机中,那就是69 20 6c 6f 76 65 20 79 6f
很多事情说起来容易,做起来却很难,开始的时候就已经经历了各种选择,而开始才是一个真正开始。
在上一篇文章中,我详细介绍了 Linux 容器中用来实现“隔离”的技术手段:Namespace。而通过这些讲解,你应该能够明白,Namespace 技术实际上修改了应用进程看待整个计算机“视图”,即它的“视线”被操作系统做了限制,只能“看到”某些指定的内容。但对于宿主机来说,这些被“隔离”了的进程跟其他进程并没有太大区别。
👆点击“博文视点Broadview”,获取更多书讯 也许你正试图将你的应用改造成并行模式运行,也许你只是单纯地对并行程序感兴趣。 无论出于何种原因,你正对并行计算充满好奇、疑问和求知欲。 不过首先,要公布一条令人沮丧的消息。 就在大伙儿都认为并行计算必然成为未来的大趋势时,2014年年底,在Avoiding ping pong论坛上,伟大的Linus Torvalds提出了一个截然不同的观点,他说:“忘掉那该死的并行吧!”(原文:Give it up. The whole "parallel comput
Windows 基本占领了电脑时代的市场,商业上取得了很大成功,但是它并不开源,所以要想接触源码得加入 Windows 的开发团队中。
大家好,今天与大家分享的主题是FFmpeg在 Intel GPU上的硬件加速与优化。
<Connector port="8080" protocol="org.apache.coyote.http11.Http11NioProtocol" redirectPort="8443" URIEncoding="UTF-8" minSpareThreads="25" maxSpareThreads="300" maxThreads="500" acceptCount="500" connectionTimeout="30000" enableLookups="false"/>
--vm-bytes B 指定 malloc() 时内存的字节数,默认256MB --vm-hang N 指定执行 free() 前等待的秒数 -d N、 --hdd N
白嘉庆,西邮陈莉君教授门下研一学生。曾在华为西安研究所任C++开发一职,目前兴趣是学习Linux内核网络安全相关内容。
正如之前文章讲过:在 Unix / Linux 体系中,常常使用“用户” CPU 时间(us)、“系统” CPU 时间(sy)、“良好”的 CPU 时间(ni)、“空闲” CPU 时间(id)、“等待”CPU 时间(wa)、“硬件中断” CPU 时间(hi)、“软件中断” CPU 时间(si)以及“被盗” CPU 时间(st)等 8 个不同的指标来评判操作系统的 CPU 资源使用情况。
硬件中断发生频繁,是件很消耗 CPU 资源的事情,在多核 CPU 条件下如果有办法把大量硬件中断分配给不同的 CPU (core) 处理显然能很好的平衡性能。 现在的服务器上动不动就是多 CPU 多核、多网卡、多硬盘,如果能让网卡中断独占1个 CPU (core)、磁盘 IO 中断独占1个 CPU 的话将会大大减轻单一 CPU 的负担、提高整体处理效率。 VPSee 前天收到一位网友的邮件提到了 SMP IRQ Affinity,引发了今天的话题:D,以下操作在 SUN FIre X2100 M2 服务器+
我们在搞清楚如何加速Linux计算机之前,需要知道哪些方法可以帮助我们找到引导时启动的服务、以更高或更低优先级运行的进程、CPU运行状况、内存是否塞满了过多数据,还要检查交换内存区是否已满。最后,我们还要检查硬盘是否运行正常。
最近,一个来自福州的男生突然火了,原因是知乎上一个热帖《清华大学计算机专业本科的这位同学是什么水平?》:
清明小长假,在家宅了几天,晃晃悠悠,今天才缓过来,同学都去哪里happy了,有没有碰到什么新鲜的事情可以分享下? 我最近在研究资源管理,今天聊聊资源管理管控方法: 系统的资源分为cpu,mem,io,net几大类,为了管理和分配好资源有很多方法。 首先说说重量级的虚拟化技术,虚拟化技术是当前非常热门的一门技术。比如主要面向桌面应用如云桌面,云主机,常见的分类是: A、操作系统虚拟化——Vmware的vSphere、workstation;微软的Windows Server with Hyper-v、Vir
https://mp.weixin.qq.com/s/_OHDxCIWQDEMa3vsEXgVDA
本文中若有任何疏漏错误,有任何建议和意见,请回复内核月谈微信公众号,或通过 oliver.yang at linux.alibaba.com 反馈。
就像他的名字一样,服务器在网络上为不同用户提供不同内容的信息、资料和文件。可以说服务器就是Internet网络上的资源仓库,正是因为有着种类繁多数量庞大内容丰富的服务器的存在,才使得Internet如此的绚丽多彩。
导读 在处理某些规模庞大和复杂的数据与计算时,量子计算独有的叠加和纠缠特性在算力方面相比于经典计算表现出强大优势。现阶段,由于量子计算机的研发受限于有效的量子比特数、相干时间长度、量子门操作精度等,对量子计算机的研究焦点进而转向量子模拟器,量子模拟器也因此成为发挥量子优越性和研究量子算法的有效途径。
通俗的来说容器其实是一种沙盒技术。顾名思义,沙盒就是能够像一个集装箱一样,把你的应用“装”起来的技术。这样,应用与应用之间,就因为有了边界而不至于相互干扰;而被装进集装箱的应用,也可以被方便地搬来搬去。不过,这两个能力说起来简单,但要用技术手段去实现它们,确并不是很容易。所以,本篇文章就来剖析一下容器的实现方式
在上文性能基础之理解Linux系统平均负载和CPU使用率,我们详细介绍了 Linux 系统平均负载的相关概念,本文我们来做几个案例分析,以便于加深理解。
Linux 命名空间对全局操作系统资源进行了抽象,对于命名空间内的进程来说,他们拥有独立的资源实例,在命名空间内部的进程可以实现资源可见。 对于命名空间外部的进程,则不可见,实现了资源的隔离。这种技术广泛的应用于容器技术里。
CPU个数, 内存大小, 磁盘空间大小, 操作系统类型(Linux, Windows),其中操作系统类型设置为私有变量,外部不可以更改。 实现一个方法,输出服务器的属性内容为以下格式: 8核CPU, 40G内存, 150G磁盘空间,Linux。
而实际上,在Linux中,进程不止一个执行流,而是可能会有几个或很多个。同一个进程中,每一个执行流都指向同一个虚拟地址空间,由操作系统创建。即在完整的进程中,进程包括:若干个执行流,虚拟地址空间,页表,以及存在物理内存中属于该进程的数据和代码。
7月4日,2022 CUDA on Arm Platform线上训练营开始第一天的课程。 第一天的课程,NVIDIA开发者社区何琨老师重点讲解: 基于Arm的Jetson开发环境介绍,Arm Linux系统简介(1.1理论课+实验课) 介绍实验平台,介绍Linux编译的基本技巧,介绍基本的开发环境。实验课:Makefile 编写规范。 GPU架构及异构计算(1.2) 介绍GPU架构以及异构计算的基本原理 介绍GPU硬件平台 介绍基于Arm的嵌入式平台GPU架构和编程模型之间的关系,介绍
前言: 在前文《[linux][memory]KSM技术分析》中,分析了KSM技术的基本实现原理。这里再总结一下使用ksm/uksm遇到的几个问题,并附加上作者对性能优化的尝试。 分析: 1,20M
2020 开年,ZILLIZ 与 InfoQ 筹备了以异构计算为专题的一系列文章。此篇文章作为异构计算专题的开篇,整体性的介绍了异构计算的定义、场景与局限性。在后续的专题文章中,我们将深入不同的 AI 应用场景进一步解释异构计算的优势。
经常有软件的同学会问到一个尖锐的问题:在超异构软硬件融合的时代,操作系统等软件是不是需要重构,是不是要打破现有的整个软件体系。我赶紧解释:“超异构软硬件融合不改变现有的软件体系,所有的软件该是什么样还是什么样。”
本篇文章作为操作系统的入门文章,可能入门都算不上吧,毕竟操作系统太庞大和复杂了。本篇文章主要带你了解一下我们常用的操作系统环境。
大家好,我是腾讯云的赵军,同时我也是FFmpeg决策委员会委员、开源爱好者。在2018年成为FFmpeg maintainer,2019年入选 FFmpeg 决策委员会(voting committee),具备丰富的基于Linux 的Router/Gateway 开发经验,并持续关注Linux 在网络方面发展。曾开发基于Linux 的高清/ 标清H.264/MPEG2视频解码器及图像处理平台。曾在Intel DCG/NPG 负责基于FFmpeg以及Intel平台上的视频编码/解码/转码、视频后处理、视频分析的硬件加速的工作。目前在腾讯云负责视频云的系统优化相关工作,除去支持公司内部的项目开发以外,也在持续向FFmpeg社区提交patch,同时也倡导引领同事以开放的心态拥抱开源。
伴随着飞速增长的视频普及与观看需求,腾讯云技术专家、FFmpeg决策委员会委员赵军认为,视频行业目前存在一个“技术、需求与现实”的三角博弈,其场景犹如带着镣铐的舞蹈,即需要在超高清晰度、计算能力与网络带宽约束之下寻求平衡。正是基于这样一个三角博弈,腾讯云以“开源、协同”为利器,逐步打磨出一个完备且高效的视频产品链。 文 / 赵军 大家好,我是腾讯云的赵军,同时我也是FFmpeg决策委员会委员、开源爱好者。在2018年成为FFmpeg maintainer,2019年入选 FFmpeg 决策委员会(vo
1. rx-checksumming:校验接收报文的checksum。
eBPF代表扩展的伯克利数据包过滤器。在这份全面的技术指南中,了解关于Linux eBPF的所有重要信息。
并发 是指在某一时间段内能够处理多个任务的能力,而 并行 是指同一时间能够处理多个任务的能力。并发和并行看起来很像,但实际上是有区别的,如下图(图片来源于网络):
本文介绍了如何通过配置Windows系统环境来学习TensorFlow,包括安装CUDA、cuDNN、Anaconda环境和Python版本等。作者选择了Windows系统环境作为学习TensorFlow的起点,并通过安装CUDA和cuDNN来优化环境。最后,作者通过Anaconda环境配置了Python环境,并安装了TensorFlow CPU版本和GPU版本,成功进行了TensorFlow的测试。
2011 年 10 月,big.LITTLE 一经推出就成为了全球第一的应用于手机市场的异构处理技术。该技术的架构包括一个高性能“大”(big)CPU 集群和一个高效率“小”(LITTLE)CPU 集群,它们之间通过一致互联实现连接。在该架构上运行的软件(全局任务调度)可以将正确的应用程序任务调度到正确的CPU上。
Linux 首席架构师,当今全球最著名程序员之一 Linus Torvalds 最近在邮件列表中的言论再次引起一片哗然。
大多数现代操作系统旨在尝试从底层硬件资源中提取最佳性能。这主要是通过两个主要硬件资源的虚拟化来实现的:CPU 和内存。现代操作系统提供了一个多任务环境,基本上为每个任务提供了自己的虚拟 CPU。任务通常不知道它不独占 CPU 使用权这一事实。
领取专属 10元无门槛券
手把手带您无忧上云