微服务治理中限流、熔断、降级是一块非常重要的内容。目前市面上开源的组件也不是很多,简单场景可以使用Guava,复杂场景可以选用Hystrix、Sentinel。今天要说的就是Sentinel,Sentinel是一款阿里开源的产品,只需要做较少的定制开发即可大规模线上使用。从使用感受上来说,它有以下几个优点:
CPU使用率指的是程序在运行期间实时占用的CPU百分比,这是对一个时间段内CPU使用状况的统计。
本文中若有任何疏漏错误,有任何建议和意见,请回复内核月谈微信公众号,或通过 oliver.yang at linux.alibaba.com 反馈。
http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
在 Linux 下我们通过 top 或者 htop 命令可以看到当前的 CPU 资源利用率,另外在一些监控工具中你可能也遇见过,那么它是如何计算的呢?在 Nodejs 中我们该如何实现?
CPU 利用率,又称 CPU 使用率。顾名思义,CPU 利用率用于描述 CPU 的运行情况,反映了一段时间内 CPU 被程序占用的情况。使用率越高,表示计算机在该时间段内运行了更多的程序,反之则较少。CPU 的利用率与其性能直接相关。
来源 | https://juejin.cn/post/6948034657321484318
系统负载:在Linux系统中表示,一段时间内正在执行进程数和CPU运行队列中就绪等待进程数,以及非常重要的休眠但不可中断的进程数的平均值(具体load值的计算方式,有兴趣可以自行深究,这里不深究)。说白了就是,系统负载与R(Linux系统之进程状态)和D(Linux系统之进程状态)状态的进程有关,这两个状态的进程越多,负载越高。
当我们系统有问题的时候,不要急于去调查我们代码 首先要看的是操作系统的报告,看看操作系统的CPU利用率,看看内存使用率,看看操作系统的IO,还有网络的IO,网络链接数,等等 Windows下的perfmon是一个很不错的工具,Linux下也有很多相关的命令和工具,比如:SystemTap,LatencyTOP,vmstat,sar,iostat,top,tcpdump等等 通过观察这些数据,就可以知道性能问题基本上出在哪里 (1)先看CPU利用率,如果CPU利用率不高,但是系统的吞吐量和系统延迟指标上不去,
什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令 ** 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令** 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
CPU 并非 90% 的时间都在忙着,很大一部分时间在等待,或者说“停顿(Stalled)”了。这种情况表示处理器流水线停顿,一般由资源竞争、数据依赖等原因造成。多数情况下表现为等待访存操作,其中又以读操作为主。在停顿周期内,不能执行指令,这意味着你的程序不往前走。值得注意的是,图中 “Stalled” 状态所占的比例是作者依据生产环境中的典型场景计算而来,具有普遍现实意义。因此,大多时候 CPU 处于停顿状态,而你却不知道,因为 CPU 利用率这个指标没有告诉你真相。通过进一步分析 CPU 停顿的原因,可以指导代码优化,提高执行效率,这是我们深入理解CPU微架构的动力之一。
(ps:对于如何在Intel CPU,ARM架构CPU,以及Jetson TensorRT上部署深度学习模型,以及部署遇到的速度问题,该如何解决。请查看我的另外一篇文章。如何定制化编译Pytorch,TensorFlow,使得CNN模型在CPU,GPU,ARM架构和X86架构,都能快速运行,需要对每一个平台,有针对性的调整。如何做到最大化加速深度学习在不同平台部署性能。请看我的这篇文章。)
说真的,这就是《我想进大厂》系列第八篇,但是Linux的问题确实很少,就这样,强行编几个没有营养的问题也没啥意义。
一般来说对于需要大量cpu计算的进程,当前端压力越大时,CPU利用率越高。但对于I/O网络密集型的进程,即使请求很多,服务器的CPU也不一定很到,这时的服务瓶颈一般是在磁盘的I/O上。比较常见的就是,大文件频繁读写的cpu开销远小于小文件频繁读写的开销。因为在I/O吞吐量一定时,小文件的读写更加频繁,需要更多的cpu来处理I/O的中断。 在Linux/Unix下,CPU利用率分为用户态,系统态和空闲态,分别表示CPU处于用户态执行的时间,系统内核执行的时间,和空闲系统进程执行的时间。平时所说的CPU利用率是
线程的使用目的是提高运行速度,提高运行的速度是要充分提用CPU和I/O 的利用率。
记得博主以前被问到 CPU 负载如何才算高的时候,出过一次糗,具体就不记录了。。。在网上找了一篇比较详细的 Linux 下的 CPU 负载算法教程,科普一下。不感兴趣,或看不懂的朋友无视即可,不必浪费时间哈。 ---- 昨天查看 Nagios 警报信息,发现其中一台服务器 CPU 负载过重,机器为 CentOS 系统。信息如下: 2011-2-15 (星期二) 17:50 WARNING - load average: 9.73, 10.67, 10.49 还有前两个小时发出的警报信息: 2011-2
Redis是目前广为人知的一个内存数据库,在各个场景中都有着非常丰富的应用,前段时间Redis推出了6.0的版本,在新版本中采用了多线程模型。
在 Linux 系统中的 /proc/stat 文件中存储了CPU 活动的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。不同内核版本中该文件的格式可能不大一致,以下通过实例来说明数据该文件中各字段的含义。
内存量,缓存大小,读取和写入磁盘的速度以及处理能力的速度和可用性都是影响基础架构性能的关键因素。在本教程中,我们将重点介绍CPU监控概念以及警报策略。我们将介绍如何使用两个常见的Linux实用程序,uptime命令和top命令了解CPU负载和利用率,以及如何设置腾讯云警报策略以通知您有关CVM CPU的高负载情况。
CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高。
时间片即CPU分配给各个程序的时间,每个线程被分配一个时间段,称作它的时间片,即该进程允许运行的时间,使各个程序从表面上看是同时进行的。如果在时 间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。而不会造成CPU资源浪费。在 宏观上:我们可以同时打开多个应用程序,每个程序并行不悖,同时运行。但在微观上:由于只有一个CPU,一次只能处理程序要求的一部分,如何处理公平,一 种方法就是引入时间片,每个程序轮流执行。 分时操作系统是把CPU的时间划分
本文介绍了如何监控调度异常点,通过弹性计算平台实现异常点检测、业务建模、调度、冲突检测、跨机调度等功能。
Linux内核的DL调度器是一个全局EDF调度器,它主要针对有deadline限制的sporadic任务。注意:这些术语已经在本系列文章的第一部分中说明了,这里不再赘述。在这本文中,我们将一起来看看Linux DL调度器的细节以及如何使用它。另外,本文对应的英文原文是https://lwn.net/Articles/743946/,感谢lwn和Daniel Bristot de Oliveira的分享。
一、背景 互联网产业拥抱AI成为了当下的热潮:无人驾驶、医疗AI和智能推荐从实验室走出,融入到工程实业中;腾讯自主研发的王者荣耀等游戏AI给人们带去了快乐,“绝艺”更是获得了UEC杯冠军;而AI和海量计算力分不开,绝艺每天的盘数计算量都在亿级,王者每天计算结果均在百T,这些业务源源不断的计算力均来自腾讯架平TCS-弹性计算平台。该平台是根置于架平存储设备搭建而成,建设中最突出的问题是如何发现并调度异常计算点,本文从cpi的角度来介绍弹性平台的解决之道。 二、CPI 弹性平台中的设备都是在线业务与计算业务混部
从Kepler的GP10架构开始,NVIDIA就引入了MPS(基于软件的多进程服务),这种技术在当时实际上是称为HyperQ ,允许多个 流(stream)或者CPU的进程同时向GPU发射Kernel函数,结合为一个单一应用程序的上下文在GPU上运行,从而实现更好的GPU利用率。在单个进程的任务处理,对GPU利用率不高的情况下是非常有用的。实际上,在Pascal架构出现之后的MPS可以认为是HyperQ的一种实现方式。 现在在Volta架构下面,NVIDIA又将MPS服务进行了基于硬件的优化。 MPS有哪些
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
前言: 朋友遇到了load average偏高的问题,关于load average的解释,网上也是五花八门,有的说法甚至都有些不负责任。在这里详细分析一下load average。 分析: 1,l
在linux系统环境的测试开发过程中,我们常常需要评估系统性能,尤其在性能测试工作中,我们需要通过系统资源的监控,从而分析定位系统的性能瓶颈。
SIP的第四期结束了,因为控制策略的丰富,早先的的压力测试结果已经无法反映在高并发和高压力下SIP的运行状况,因此需要重新作压力测试。跟在测试人员后面做了快一周的压力测试,压力测试的报告也正式出炉,本来也就算是告一段落,但第二天测试人员说要修改报告,由于这次作压力测试的同学是第一次作,有一个指标没有注意,因此需要修改几个测试结果。那个没有注意的指标就是load average,他和我一样开始只是注意了CPU,内存的使用状况,而没有太注意这个指标,这个指标与他们通常的限制(10左右)有差别。重新测试的结果由于这个指标被要求压低,最后的报告显然不如原来的好看。自己也没有深入过压力测试,但是觉得不搞明白对将来机器配置和扩容都会有影响,因此去问了DBA和SA,得到的结果相差很大,看来不得不自己去找找问题的根本所在了。
在文章中,我们提到了 Linux 用来管理和限制 Linux 进程组资源使用的 CGroup 机制。本文我们就来详细介绍一下。
top是linux程序员经常使用的分析机器运行状态的工具。但是并不是所有人都能清楚如何使用该工具对程序占用CPU资源的情况进行分析,比如图中us、sy、ni、id、wa和si等各是什么意思?高低都能说明什么问题?本文将抛砖引玉,讲解下该工具的使用。
Android用户几乎每时每刻都在和显示交互;因此,良好的显示性能对于用户体验至关重要。然而,实现平滑如丝的性能并不总是那么容易。需要整个系统协同工作,并且内核并不总是像人们所希望的那样支持这种协作。Android小组目前正在考虑现有内核功能的多种组合以及可能的改进,以提供最佳的显示体验。
高并发也算是这几年的热门词汇了,尤其在互联网圈,开口不聊个高并发问题,都不好意思出门。高并发有那么邪乎吗?动不动就千万并发、亿级流量,听上去的确挺吓人。但仔细想想,这么大的并发与流量不都是通过路由器来的吗?
一段代码能否把机器硬件性能发挥到极致,我们通常用cpu和IO利用率(本地存储io和网络io)来衡量。
目前市场上有许多开源监控工具可用于监控 Linux 系统的性能。当系统达到指定的阈值限制时,它可以发送电子邮件警报。它可以监视 CPU 利用率、内存利用率、交换利用率、磁盘空间利用率等所有内容。
Linux 提供了各种工具,用于报告和检查 CPU、RAM、存储和网络的操作。本文演示了其中许多实用程序的工作原理。
VMware的分布式资源调度(Distributed Resource Scheduler,DRS),可以动态地分配和平衡计算容量,将硬件资源聚集到逻辑资源池中。可以持续不断地监控资源池的利用率,智能分配资源,允许用户自己定义规则和方案来决定虚拟机共享资源的方式及它们之间优先权的判断根据。
作者 | Lasse Vilhelmsen 译者 | 刘雅梦 策划 | 李冬梅 文描述了一个自动化的 CPU 垂直扩展系统的实现,在该系统中,优步(Uber)上运行的每个存储工作负载都被分配到了理想数目的内核。如今,该框架已被用于调整超过 50 万个 Docker 容器,自其建立以来,已净减少了超过 12 万个内核的分配,从而每年节省了数百万美元的基础设施支出。 在优步(Uber),我们在容器化环境中运行所有的存储工作负载,如 Docstore、 Schemaless、M3、MySQL、Cass
摘要:本文主要讲述了在Rackspace上利用不到45分钟的时间在一个由30个4GB内存的云服务器组成的集群上部署10,000个Nginx 容器。具体步骤:在Nginx 集群构建应用程序模板;在Rackspace云上部署基础设施等等。 虽然应用程序的可移植性(即能够在任何一个主机上运行相同的应用程序)仍是采用Linux容器的主要动力,但优化服务器的利用率这另一个关键的优势能够使得你仅占用计算机的很少部分的计算。当然,对于像PROD这种生产环境(正式环境),你可能还是倾向于分配足够的CPU和内存来满足工作所需
由于项目的需要,需要做一个简单监控服务器的CPU利用率、CPU负载、硬盘使用率、内存利用率和服务器的各个端口的开启情况的程序,并把结果通知到监控平台,如果出现异常,监控平台打电话或者发短信通知给具体的运维人员
线程池设置多大,并没有固定答案, 需要结合实际情况不断的测试才能得出最准确的数据.
由于Intel为代表的处理器厂商发现,处理器主频的提升受到硅材料物理特性的限制,难以突破4.0GHz的瓶颈,从而转向在处理器集成电路上集成多个处理核心,以提升处理器的计算力。为了让多个处理核心可以运行多个不同的应用程序和服务,出现了把一台物理机资源分割为多个虚拟机的虚拟化技术。
领取专属 10元无门槛券
手把手带您无忧上云