减少编程工作、更多地关注科学本身 全球视觉计算技术行业领袖NVIDIA®(英伟达™)今日发布了全新OpenACC工具套件,通过这款全新的套件,未来科学研究将可以做更多事情,并大幅提升计算效率。 虽然计算核心在短时间内不会变得更快,但处理器的并行计算能力则越来越强大。这一趋势在过去的十年里一直存在,而且还会持续下去。 OpenACC现已在HPC行业中得到广泛支持,因为它能够简化GPU等现代处理器的并行编程。自2011年Cray、PGI以及NVIDIA等领先的HPC供应商推出OpenACC编程标准以来,如今已有
我们正带领大家开始阅读英文的《CUDA C Programming Guide》,今天是第72天,我们正在讲解CUDA 动态并行,希望在接下来的28天里,您可以学习到原汁原味的CUDA,同时能养成英文阅读的习惯。
二战结束后,考虑到二战为人类带来的巨大灾难,爱因斯坦与特斯拉联手研发了一台时空穿梭机,并回到了1924年,除掉了由于啤酒馆政变入狱的希特勒,纳粹德国不复存在,但这却将欧洲拖入了新的血雨腥风,使得苏联统治了整个欧洲。不久,斯大林被Nod兄弟会派来的女刺客暗杀……
TensorFlow™是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。
本系列主要介绍Rust与AI的那些天作之合(开源项目),我们会以开源项目代码阅读的方式推进,以Rust为主,同时科普AI相关知识,目的是让更多非算法、非Rust的程序员进一步学习Rust和AI相关知识。当然,很显然地,我们也希望Rust程序员和AI算法工程师能从中有所收获。前者可以关注AI算法的设计和优化,后者可以关注Rust如何助力AI算法。
最近因项目需要,得把OpenCV捡起来,登录OpenCV官网,竟然发现release了4.0.0-beata版本,所以借此机会,查阅资料,了解下OpenCV各版本的差异及其演化过程,形成了以下几点认识:
看一下Julia官网上的Benchmark,Julia综合速度,是R语言的42倍,是Python的15倍,是Java的3倍,是Fortran的1倍,和C语言速度不相上下。
尽管依赖问题非常棘手,但明白包管理以及包编译安装原理有助于我们深刻理解计算机基本原理,避免成为一个调包侠。
异构计算(Heterogeneous computing)技术从80年代中期产生,由于它能经济有效地获取高性能计算能力、可扩展性好、计算资源利用率高、发展潜力巨大,目前已成为并行/分布计算领域中的研究热点之一。本文主要介绍了CPU+GPU基础知识及其异构系统体系结构(CUDA)和基于OpenCL的异构系统,并且总结了两种结构的特点,从而对异构计算有了更深的理解。
首先,让我们看一下官网:https://pjreddie.com/darknet/
本文将探讨GPU开发实践,重点关注使用GPU的AI技术场景应用与开发实践。首先介绍了GPU云服务器在AIGC和工业元宇宙中的重要作用,然后深入讨论了GPU在AI绘画、语音合成等场景的应用以及如何有效地利用GPU进行加速。最后,总结了GPU并行执行能力的优势,如提高算力利用率和算法效率,卷积方式处理效率更高,现场分层分级匹配算法计算和交互,超配线程掩盖实验差距,以及tensor core增加算力峰值等。
在众多编程语言中,Go凭借一系列特性,成为了跨平台开发的理想选择。Go简洁的语法和强大的标准库使得开发者可以高效地编写代码。其垃圾回收特性避免了复杂的内存管理。更重要的是,Go提供了简单易用的跨平台编译特性,使得在一个平台上构建其他平台的二进制程序变得轻松。无论是Linux、Windows,还是macOS,甚至是小型的嵌入式系统,都可以通过Go来开发。
一、传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors(更多处理器) 二、CPU & GPU CPU更加侧重执行时间,做到延时小 GPU则侧重吞吐量,能够执行大量的计算 更形象的理解就是假如我们载一群人去北京,CPU就像那种敞篷跑车一样速度贼快,但是一次只能坐两个人,而GPU就像是大巴车一样,虽然可能速度不如跑车,但是一次能载超多人。 总结起来相比于CPU,GPU有
这个错误通常是由于CUDA相关的问题引起的。CUDA是一种用于在GPU上进行并行计算的平台和编程模型。而darknet是一个流行的深度学习框架,基于C语言编写,用于目标检测和图像分类等计算机视觉任务。当在darknet中使用CUDA进行GPU加速时,可能会出现上述错误。
XML就是个垃圾,xml的解析很烦人,对于计算机它也是个灾难。这种糟糕的东西完全没有存在的理由了。-Linus Torvalds
在选修本课程前,学生应对C语言程序设计、数字逻辑电路有一定的基础。本课程试图说明一个完整的计算系统的工作原理,其中涉及部分操作系统的知识。为了有更好的理解,学生还可以同时选修操作系统课程。课程中的实例和原理介绍以 LoongArch 体系结构为主。与传统课程中讲授的 X86 体系结构相比,LoongArch 结构相对简单明晰而又不失全面。学生可以通过配套的实验课程,自底而上构建自己的计算机系统,包括硬件、操作系统以及应用软件,从而对“如何造计算机”有更深刻的认识。
CUDA,Compute Unified Device Architecture的简称,是由NVIDIA公司创立的基于他们公司生产的图形处理器GPUs(Graphics Processing Units,可以通俗的理解为显卡)的一个并行计算平台和编程模型。
图形用户界面,英文为Graphical User Interface,简写为GUI。
曾经 Fortran和C一直是高性能计算(HPC)的默认编程语言。这两种语言都提供了可以和操作系统内存以及硬件进行交互的基础类型和函数,从而在响应时间和资源使用方面产生高效的代码。然而,对这两种语言而言,如何生成可维护和可扩展的代码是一个真正的挑战。
参考了很多大神的内容,并非完全原创,只是为了查漏补缺,记录自己的学习过程。个人水平有限,错误难免,欢迎讨论。
前面发了一些关于 Shader 编程的文章,有读者反馈太碎片化了,希望这里能整理出来一个系列,方便系统的学习一下 Shader 编程。
目前IT行业的首要热点,也就是所谓的“大模型”和“机器学习”等AI技术,背后的算法,本质上是列出一个参数方程,并根据现有样本(参数方程的输入和输出),来迭代计算参数方程的参数,也就是所谓的调参。
扩展库pyopencl使得可以在Python中调用OpenCL的并行计算API。OpenCL(Open Computing Language)是跨平台的并行编程标准,可以运行在个人电脑、服务器、移动终端以及嵌入式系统等多种平台,既可以运行在CPU上又可以运行于GPU上,大幅度提高了各类应用中的数据处理速度,包括游戏、娱乐、医学软件以及科学计算等等。 import numpy as np import pyopencl as cl import pyopencl.array from pyopencl.ele
在使用深度学习框架的过程中一定会经常碰到这些东西,虽然anaconda有时会帮助我们自动地解决这些设置,但是有些特殊的库却还是需要我们手动配置环境,但是我对标题上的这些名词其实并不十分清楚,所以老是被网上的教程绕得云里雾里,所以觉得有必要写下一篇文章当做笔记供之后参考。
DAOS在后傲腾时代的发展策略: https://www.bilibili.com/video/BV1Qw411377s
汇编语言对应cpu指令集(二进制机械码),兼容性不好,不能跨平台,arm的汇编和x86汇编差别很大 处理器指令集:https://blog.csdn.net/antony1776/article/details/83743856
Webbench是一个在linux下使用的非常简单的网站压测工具。它使用fork()模拟多个客户端同时访问我们设定的URL,测试网站在压力下工作的性能,最多可以模拟3万个并发连接去测试网站的负载能力。Webbench使用C语言编写, 代码实在太简洁,源码加起来不到600行。
提起1994年,你会想起那时在世界电影史上都大放异彩的一年的,那一年国外影坛神仙打架,《阿甘正传》、《肖申克的救赎》、《这个杀手不太冷》等等横空出世,中国也有《重庆森林》、《活着》这样的佳作。
**张量是所有深度学习框架中最核心的组件,因为后续的所有运算和优化算法都是基于张量进行的。**几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。
Webbench是一个在Linux下使用的非常简单的网站压测工具。它使用fork()模拟多个客户端同时访问我们设定的URL,测试网站在压力下工作的性能,最多可以模拟3万个并发连接去测试网站的负载能力。Webbench使用C语言编写, 代码实在太简洁,源码加起来不到600行。
公司简介 寒武纪行歌为全球智能芯片领域的先行者—寒武纪全资的智能驾驶芯片业务主体,成立于2021年,总部位于南京,与上海、北京、深圳、西安多地团队协同联动。 行歌致力于打造世界领先的高性能、高可靠的智能驾驶芯片及解决方案,为“软件定义汽车”提供坚实的“芯”支持,为全球汽车产业客户打造“智行无忧,且行且歌”的用户体验。 行歌作为寒武纪专注智能驾驶领域的全资子公司,将基于寒武纪强大的AI芯片能力,打造超大规模的智能驾驶SOC芯片,智能驾驶软件平台以及算法解决方案,最终建立智能驾驶生态。 FAE 总监 岗位职责:
根据日本富士通实验室最新研究。他们应用了一种优化方法,在ABCI 集群上,实现了74.7秒的训练时间。训练吞吐量为173万图像/秒,top-1验证准确率为75.08%。
区别一、python虚拟机没有java强,java虚拟机是java的核心,python的核心是可以很方便地使用c语言函数或c++库。二、python是全动态性的,可以在运行时自己修改自己的代码,java只能通过变通方法实现。python的变量是动态的,而java的变量是静态的,需要事先声明,所以java ide的代码提示功能优于python ide。三,python的产生几十年了,几十年前面向过程是主流,所以用python有好多程序用的是面向过程设计方法,很多概念从c语言过来的,class在python中是后加入的,而java是为了实现没有指针的c++(当年com组件用的引用记数,java用的虚拟机),主要采用面向对象的设计方法,很多概念是oop的概念。面向过程,相对简洁直观,但容易设计出面条程序,面向对象,相对抽象优雅,但容易过度抽象。四,在实际使用的python入门简单,但要学会用python干活,需要再学习python各种库,pyhton的强大在于库,为什么python的库强大,原因是python的库可以用python,c语言,c++等设计,再提供给python使用,所以无论gpu运行,神经网络,智能算法,数据分析,图像处理,科学计算,各式各样的库在等着你用。而java没有python那么多的开源库,很多库是商业公司内部使用,或发布出来只是一个jar包,看不到原始代码。python虚拟机因为编译性没有java的支持的好(或者说故意这么设计的),一般直接使用源码(linux)&
【编者按】“C++ 已经死了 80%?”本文作者已经使用 C++ 18 年了,他在体验了数十门编程语言后,他指出,尽管 C++ 在过去几十年中一直是程序员最常用的编程语言之一,但它存在一些问题,如不安全、效率低、浪费程序员的精力等。因此,文章探讨了一些可能会取代 C++ 的语言和技术,包括 Spiral、Numba 和 ForwardCom 等,并分别对它们进行了详细的介绍。
理解英伟达CUDA架构涉及几个核心概念,这些概念共同构成了CUDA并行计算平台的基础。 1. SIMT(Single Instruction Multiple Thread)架构 CUDA架构基于SIMT模型,这意味着单个指令可以被多个线程并行执行。每个线程代表了最小的执行单位,而线程被组织成线程块(Thread Block),进一步被组织成网格(Grid)。这种层级结构允许程序员设计高度并行的算法,充分利用GPU的并行计算核心。 2. 层级结构 - 线程(Threads): 执行具体计算任务的最小单位。 - 线程块(Thread Blocks): 一组线程,它们共享一些资源,如共享内存,并作为一个单元被调度。 - 网格(Grid): 包含多个线程块,形成执行任务的整体结构。 3. 内存模型 - 全局内存: 所有线程均可访问,但访问速度相对较慢。 - 共享内存: 位于同一线程块内的线程共享,访问速度快,常用于减少内存访问延迟。 - 常量内存和纹理内存: 优化特定类型数据访问的内存类型。 - 寄存器: 最快速的存储,每个线程独有,但数量有限。 4. 同步机制 屏蔽同步(Barrier Synchronization) 通过同步点确保线程块内或网格内的所有线程达到某个执行点后再继续,保证数据一致性。 5. CUDA指令集架构(ISA) CUDA提供了专门的指令集,允许GPU执行并行计算任务。这些指令针对SIMT架构优化,支持高效的数据并行操作。 6. 编程模型 CUDA编程模型允许开发者使用C/C++等高级语言编写程序,通过扩展如`__global__`, `__device__`等关键字定义GPU执行的函数(核函数,kernel functions)。核函数会在GPU上并行执行,而CPU代码负责调度这些核函数并在CPU与GPU之间管理数据传输。 7. 软件栈 CUDA包含一系列工具和库,如nvcc编译器、CUDA runtime、性能分析工具、数学库(如cuFFT, cuBLAS)、深度学习库(如cuDNN)等,为开发者提供了完整的开发环境。
距离OpenCV 3.0发布已逾三年半了,终于在2018-11-20,OpenCV 4.0正式版强势来袭!至此开始OpenCV 4.x的王朝!
作为一名程序员,应当具有挑战精神,才能写出“完美”的代码。挑战历史悠久的C语言版wc命令一向是件很有趣的事。今天,我们就来看一下如何用70行的Go代码打败C语言版wc命令。
一位码农总结了自己的编程生涯,总结了以下几点: 对框架了解的越多,你才能用得更好。——更好意味着更快,更可靠,写出的代码更容易向上兼容。但另一方面来说,你得先停下来进行学习然后才能开始使用它。只有我理解这些框架是如何实现的了,使用的时候才能感到比较有信心。 我可以做的更好,但我不会这么做。因为它已经实现好了,也足够好用。——你其实并不需要最好的。你需要的只是一个足够好的解决方案就可以了。 原文《一位码农的几点思考》还有更精彩和详细的论述。 一、 Facebook将神奇动画引擎Pop开源了! Facebo
超级值得收藏的C/C++资料宝库,汇总了 400+ 条 C++ 框架、库和工具 。
关于 C++ 框架、库和资源的一些汇总列表,内容包括:标准库、Web应用框架、人工智能、数据库、图片处理、机器学习、日志、代码分析等。
C++标准库,包括了STL容器,算法和函数等。 C++ Standard Library:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分。 Standard Template Library:标准模板库 C POSIX library : POSIX系统的C标准库规范 ISO C++ Standards Committee :C++标准委员会
darknet是一个较为轻型的完全基于C与CUDA的开源深度学习框架,其主要特点就是容易安装,没有任何依赖项(OpenCV都可以不用),移植性非常好,支持CPU与GPU两种计算方式。
C++语言从诞生到今天已经经历了将近30个年头。不可否认,它的学习难度都比其它 语言较高。而它的学习难度,主要来自于它的复杂性。现在C++的使用范围比以前已经少了很多,java、C#、python等语言在很多方面已经可以代替 C++。但是也有很多地方是其他语言完全无法替代的,主要集中在需要运行效率比较高的行业,比如游戏、高效的服务器。
作者 | 刘文志 责编 | 何永灿 随着深度学习(人工智能)的火热,异构并行计算越来越受到业界的重视。从开始谈深度学习必谈GPU,到谈深度学习必谈计算力。计算力不但和具体的硬件有关,且和能够发挥硬件能力的人所拥有的水平(即异构并行计算能力)高低有关。 一个简单的比喻是:两个芯片计算力分别是10T和 20T,某人的异构并行计算能力为0.8,他拿到了计算力为10T的芯片,而异构并行计算能力为0.4的人拿到了计算力为20T的芯片,而实际上最终结果两人可能相差不大。异构并行计算能力强的人能够更好地发挥硬件的能力,而
Chris Penner最近发表的这篇文章——用80行Haskell代码击败C(https://chrispenner.ca/posts/wc),在互联网上引起了相当大的争议,从那以后,尝试用各种不同的编程语言来挑战历史悠久的C语言版wc命令(译者注:用于统计一个文件中的行数、字数、字节数或字符数的程序命令)就变成了一种大家趋之若鹜的游戏,可以用来挑战的编程语言列表如下:
最近人工智能等多门课需要复现论文,近两年的论文很多都是Pytorch环境,所以,这里总结一下Pytorch的安装教程,做好最快、最简单、最好地完成安装。
对于CUDA Fortran用户来说,PGI编译器是必然要用到的。 其实PGI编译器不仅仅可以支持Fortran,还可以支持C/C++。而对于集群用户来说,要将上万行的代码加速移植到GPU集群上,PG
白嘉庆,西邮陈莉君教授门下研一学生。曾在华为西安研究所任C++开发一职,目前兴趣是学习Linux内核网络安全相关内容。
领取专属 10元无门槛券
手把手带您无忧上云