在C++中,位域(bit fields)是一种特殊的数据结构,允许将结构体或类的成员变量按位进行分配。通过位域,可以有效地利用内存,节省存储空间,特别适用于表示布尔类型、标志位或其他不需要完整字节的数据。
有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。为了节省存储空间,并使处理简便,C语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几个不同的区域, 并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。 这样就可以把几个不同的对象用一个字节的二进制位域来表示。
有些数据在存储时并不需要占用一个完整的字节,只需要占用一个或几个二进制位即可。例如开关只有通电和断电两种状态,用 0 和 1 表示足以,也就是用一个二进位。正是基于这种考虑,C语言又提供了一种数据结构,叫做位域或位段。
(分析:第一个坑:运算符优先级,+的优先级大于>>;第二个坑:当小类型变量和整型做运算的时候,会转化为int类型。
一个定义为volatile的变量是说这变量可能会被意想不到地改变,这样,编译器就不会去假设这个变量的值了。精确地说就是,优化器在用到这个变量时必须每次都小心地重新读取这个变量的值,而不是使用保存在寄存器里的备份。下面是volatile变量的几个例子:
位域是指信息在保存时,并不需要占用一个完整的字节,而只需要占几个或一个二进制位。为了节省空间,C语言提供了一种数据结构,叫“位域”或“位段”。
C语言里的结构体是可以包含不同数据类型和相同数据类型的一个有序集合,属于构造类型,可以自己任意组合,并且结构体里也可以使用结构体类型作为成员。
用了不少芯片,就只有51有位操作,这个特性很喜欢,赋值简单、效率又高且节省内存,不必为了一个bool去分配一个uint8.
isa的本质 在学习Runtime之前首先需要对isa的本质有一定的了解,这样之后学习Runtime会更便于理解。 回顾OC对象的本质,每个OC对象都含有一个isa指针,__arm64__之前,isa仅仅是一个指针,保存着对象或类对象内存地址,在__arm64__架构之后,apple对isa进行了优化,变成了一个共用体(union)结构,同时使用位域来存储更多的信息。 我们知道OC对象的isa指针并不是直接指向类对象或者元类对象,而是需要&ISA_MASK通过位运算才能获取到类对象或者元类对象的地址。今天来
本文参考自C# 位域[flags],纯属读书笔记,加深记忆 [Flags]的微软解释是“指示可以将枚举作为位域(即一组标志)处理。”其实就是在编写枚举类型时,上面附上Flags特性后,用该枚举变量是既可以象整数一样进行按位的“|”或者按位的“&”操作了。 另外一个是在引用COM组件时使用,我没有用过,你可以查看MSDN 这种用处很大,比如权限、执行状态等,都可以用一个int型保存到数据库中,C#中使用枚举可以处理这个问题。 .Net中的枚举一般有两种用法 (1)、表示唯一的元素序列,列入一周天里面的各天 (
Sizeof的作用非常简单:求对象或者类型的大小。然而sizeof又非常复杂,它涉及到很多特殊情况,本篇把这些情况分门别类,总结出了sizeof的10个特性:
位域是一种节省空间的数据结构,是把一个数据类型按照二进制(二进位)划分为几个不同的区域,并说明每个区域的位数。
我在 /usr/include/linux/kernel.h 里遇到了一个奇怪的宏,
本篇是看完《深入理解C++11:C++11新特性解析与应用》后做的笔记的下半部分. 这本书可以看作是《C++Primer》的进阶版, 主要是更加详细地介绍了C++11的一些常用设计和标准库设施, 很多知识点都在面试中会遇到, 值得一读.
我们已经学习了对象的初始化、内存对齐等内容。这篇文章将深入学习探究对象的本质、对isa进行分析。
sizeof与offsetof在程序中经常遇到,但在面试中其应用使得许多小伙伴吃闭门羹,被面试官问得哑口无言。接下来对两者的应用做详细介绍。
sizeof,一个其貌不扬的家伙,引无数菜鸟竟折腰,小虾我当初也没少犯迷糊,秉着“辛苦我一个,幸福千万人”的伟大思想,我决定将其尽可能具体的总结一下。
有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。为了节省存储空间,并使处理简便,C语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几 个不同的区域,并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。这样就可以把几个不同的对象用一个字节的二进制位域来表示。一、位 域的定义和位域变量的说明位域定义与结构定义相仿,其形式为:
主要原因是:有些信息在存储时,只需占几个或一个二进制位(bit),并不需要占用一个完整的字节。例如,在存放一个开关量时,只有0和1两种状态,用一位二进位即可。为了节省存储空间,并使处理简便,C语言提供了一种数据结构,称为“位域”或“位段”。
sizeof作用于基本数据类型,在特定的平台和特定的编译器中,结果是确定的,如果使用sizeof计算构造类型:结构体、联合体和类的大小时,情况稍微复杂一些。
今天查看Linux内核源码,出现一个很奇怪的用法。可以在静态编译期的断言。 1. 内核源码 kernel.h BUILD_BUG_ON_ZERO判断表达式非零值编译器报错; BUILD_BUG_ON_NULL判断表达式指针地址非空报错。 /* Force a compilation error if condition is true, but also produce a result (of value 0 and type size_t), so the expression can be use
联合体是一种数据结构,其内部的成员共享同一块内存。应用这种方式可以简化多种复杂数据的处理。
干货:一个位域必须存储在同一个字节中,不能跨两个字节。如一个字节所剩空间不够存放另 一位域时,应从下一单元起存放该位域。也可以有意使某位域从下一单元开始。
位域(或者也能称之为位段,英文表达是 Bit field)是一种数据结构,可以把数据以位元的形式紧凑的存储,并允许程序员对此结构的位元进行操作。这种数据结构的好处是:
有些数据在存储时并不需要占用一个完整的字节,只需要占用一个或几个二进制位即可。例如开关只有通电和断电两种状态,用 0 和 1 表示足以,也就是用一个二进位。正是基于这种考虑,C语言又提供了一种叫做位域的数据结构。
重载这两个运算符与重载其他运算符的过程大不相同。想要真正重载new和delete的方法,首先要对new表达式和delete表达式的工作机制足够了解:
在上一节LCD层次分析中,得出写个LCD驱动入口函数,需要以下4步: 1) 分配一个fb_info结构体: framebuffer_alloc(); 2) 设置fb_info 3) 设置硬件相关的操作
std::map<K, V>的insert方法返回std::pair<iterator, bool>,两个元素分别是指向所插入键值对的迭代器与指示是否新插入元素的布尔值,而std::map<K, V>::iterator解引用又得到键值对std::pair<const K, V>。在一个涉及std::map的算法中,有可能出现大量的first和second,让人不知所措。
元素是按照定义顺序一个一个放到内存中去的,但并不是紧密排列的。从结构体存储的首地址开始,每个元素放置到内存中时,它都会认为内存是按照自己的大小(通常它为4或8)来划分的,因此元素放置的位置一定会在自己宽度的整数倍上开始,这就是所谓的内存对齐。
结构体是C/C++两种语言中的基础语法, C语言中的结构体只是一个存粹的数据集合类型的描述,它只有数据成员而没有成员方法。C++中的结构体则被赋予为一个类定义的角色,它可以有数据成员也可以有成员方法。OC语言源自于C语言,它是面向对象的C语言,自然结构体的概念就和C语言中的定义保持一致。
这一章介绍了平时可能不太会用到的C++特性,内容比较杂。其中有类似枚举,联合,局部类这样之前就用过的特性,也有类成员指针,局部类这样新了解的特性。其中个人觉得19.1对new和delete的讨论很重要,19.2的RTTI介绍也扩展了我们编码的自由度,最后19.8的位域让我们可以更方便地进行位运算。
结构体、联合体是C语言中的构造类型,结构体我们平时应该都用得很多。但是,对于联合体,一些初学的朋友可能用得并不多,甚至感到陌生。我们先简单看一下联合体:
CPU访问内 存时,总是以其整数字长为单位读写。比如 x86 CPU 总是从4字节的整数倍数地址上,读取4字节数据,它不能随心所欲地从任何位置开始读取任意长度数据。为了效率考虑,默认情况下编译器总是让整数存放于其长度的整数 倍数地址上。在一个结构中,为了做到这一点,有时不得不浪费几个字节。
做低层时,经常会读写寄存器,比如操作某位,设置为0或1,而在C语言中便为我们提供一种数据结构”位域”,使得我们通过读写”位域”来实现操作某位.
返回值的类型是标准库命名为size_t的类型,size_t类型定义在cstddef头文件中,该头文件是C标准库的头文件stddef.h的C++版本。他是一个和 机器相关的unsigned类型,其大22:14:53小足以保证内存中对象的大小。
例如下列结构体内的变量使用了位域,占用空间只有1字节(8bit)。相对于不使用位域的缩少了3字节(24bit)的数据。
在《C++ 并发编程》一文中,我们已经介绍了C++11到C++17在并发编程方面的新增API。
结构体(struct)或者联合体(union)的数据成员,第一个数据成员会放在offset为0的地方,之后的每个数据成员存储的起始位置要从该成员大小(如果该成员有子成员,比如数组、结构体等,那么就从子成员大小)的整数倍开始。
(为了方便记忆可以想成)被 const 修饰(在 const 后面)的值不可改变,如下文使用例子中的 p2、p3。
本文MISRA规则由嵌入式程序猿整理自网络,版权归原作者所有 今天我们来讲讲MISRA对文档的规则要求; 所有实现定义(implementation-defined)的行为的使用都应该文档化。 本规则要求,任何对实现定义的行为的依赖——这些行为在其他规则中没有特别说明的——都应该写成文档,例如对编译器文档的参考。如果一个特定的行为在其他规则中被显式说明了,那么只有那项规则在其需要时给出背离。 字符集和相应的编码应该文档化。 例如,ISO 10646 [22]定义了字符集映射到数字值的国际标准。出于可移植性
本文首发于: https://blog.frytea.com/archives/536/
然后代码逻辑里是大量的成员变量的判断,显得非常臃肿而且难读懂,大量的if-else判断让代码逻辑很脆弱,稍微一个情况没考虑好就会出现难以排查的bug。
这里记录每周的学习分享,周一/周二发表,文章维护在 Github:studeyang/leanrning-share[1]。
一些对时间要求特别高的时候需要嵌入一些汇编语言,其他时候使用c语言通过位定义和寄存器结构体的方式来实现对dsp寄存器进行访问和控制。
领取专属 10元无门槛券
手把手带您无忧上云