下图是根据同步、异步、阻塞、非阻塞四个指标总结的Linux下四个象限的I/O通信模式。
前几期的分享,我们站在编码视角去聊 Java IO,旨在理解与编码,本次从 Linux 操作系统层面了解一下 IO 模型,这样方能做到知其然,知其所以然。
看了一些文章,发现有很多不同的理解,可能是因为大家入切的角度、环境不一样。所以,我们先说明基本的IO操作及环境。
User space(用户空间)和 Kernel space(内核空间)。Linux里面这么设计的目的主要是为了安全,即使用户空间崩溃了,内核也不受影响。所以在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必须由用户态模式切换至内核态模式,通过系统调用访问硬件设备。
在前文中我们了解了fork函数的使用,以及写时拷贝机制的原理等,并且也学习了什么是僵尸进程,但是并没有具体讲到应如何处理僵尸进程,本次章节将对fork函数以及如何终止进程,还有僵尸进程的处理做更为详细的探讨。
Linux内核将所有的外部设备当做一个文件来操作,对文件的读写操作会调用内核的系统命令,返回一个文件描述符(file descriptor,fd)。而对socket的读写也有相应的描述符,称为socketfd。描述符就是一个数字,指向内存中的一个结构体(文件路径或者数据区等)
CPU 资源被分成若干 时间片 , 每个进程分不同的时间 , 使用 CPU 时间片 , 这是 分时复用机制 ;
周日午后,刚刚放下手里的电话,正在给刚刚的面试者写评价。刚刚写到『对Linux的基本IO模型理解不深』这句的时候,女朋友突然出现。
运行 CPU是被动接受进程的,并且操作系统会管理进程并放在内存中让CPU处理。 那么CPU是怎用什么方式去查看所有的进程呢?是定义了一个PCB类型的队列指向第一个进程的PCB,然后进行对所有进程的管理。 这个时候所有的进程是通过数据结构的方式来链接起来的,CPU会一个一个处理进程,这个时候无论被处理还是没被处理都叫做运行状态!
网络I/O,可以理解为网络上的数据流。通常我们会基于socket与远端建立一条TCP或者UDP通道,然后进行读写。单个socket时,使用一个线程即可高效处理;然而如果是10K个socket连接,或者更多,我们如何做到高性能处理?
作者:mingguangtu,腾讯 IEG 后台开发工程师 select/poll/epoll 是 Linux 服务器提供的三种处理高并发网络请求的 IO 多路复用技术,是个老生常谈又不容易弄清楚其底层原理的知识点,本文打算深入学习下其实现机制。 Linux 服务器处理网络请求有三种机制,select、poll、epoll,本文打算深入学习下其实现原理。 吃水不忘挖井人,最近两周花了些时间学习了张彦飞大佬的文章 图解 | 深入揭秘 epoll 是如何实现 IO 多路复用的 和其他文章 ,及出版的书籍《深入理
线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。
IO的阻塞与同步 IO即输入/输出(Input/Output)。每个应用系统都少不了交互,或多或少都会产生数据,而它们的核心:IO,其性能的发展明显落后于 CPU 。对于高性能、高并发的应用系统来说,回避IO瓶颈进而提升性能是至关重要的。 阻塞与非阻塞 一般来说,IO模型可以分为阻塞/非阻塞及同步/异步。先从简单的阻塞/非阻塞模型说起。 阻塞IO:用户进程发起IO操作后,必须等待IO操作完成才能继续运行。通信协议中的 Socket 编程,为了简单起见,也使用的这种方式。但这种方式会造成CPU大量闲置,系
前言:在进程学习这一块,我们主要学习的就是PCB这个进程控制块,而PBC就是用来描述进程的结构体,而进程状态就是PCB结构体中的一个变量。
缓冲I/O是指通过标准库缓存来加速文件的访问,而标准库内部再通过系统调度访问文件。带缓存I/O也叫标准I/O,它符合ANSI C的标准I/O处理,是不依赖系统内核的,所以移植性是比较强的,在使用标准I/O操作的时候为了减少对read()、write()系统调用次数,带缓存I/O就是在用户层再建立一个缓存区,这个缓存区的分配和优化长度等细节都是标准I/O库处理好的,用户不用去关心。
IO模型是编程语言和软件开发中重要的知识。本篇从IO模型这个切入点横向梳理了从操作系统到应用层IO模型相关知识。考虑到技术本身具有横向迁移的特点,也可以帮助大家在宏观与微观,具体与细节,底层与应用多角度串联技术,本篇是第一篇从IO模型说起。
为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。
前面介绍了NIO中的buffer和Channel,而我们将NIO主要的使用场景还是在网络环境中,在具体介绍之前我们需要了解下IO的模型
在Linux内核2.6出现之前进程是(最小)可调度的对象,当时的Linux不真正支持线程。Linux 2.4内核中不知道什么是“线程”,只有一个“task_struct”的数据结构,就是进程。
I/O是input/output的缩写,表示计算机与外接设备之间的数据传输。最常见的I/O类型有磁盘I/O、网络IO。IO和CPU比起来是非常低效的,为了保障应用程序的运行效率,Linux支持多种IO模型。
1、修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发 数 量都要受到系统对用户单一进程同时可打开文件数量的 限制(这是因为系统为每个TCP连接都要创 建一个socket句柄,每个socket句柄同时也是一个文件句柄)。可使用ulimit命令查看系统允许当 前用户进程打开的文件数限制: [speng@as4 ~]$ ulimit -n 1024 这表示当前用户的每个进程最多允许同 时打开1024个文件,这1024个文件中还得除去每个进
阻塞与非阻塞主要是程序等待消息通知时的状态角度来说的。阻塞调用是指调用结果返回之前,当前线程会被挂起,一直处于等待消息通知,不能够执行其他业务。
在通常的计算机书籍或者课本中对进程概念的描述是这样的 – 进程就是被加载到内存中的程序,或者被运行起来的程序就叫做进程;这样说的原因如下:
我们都知道unix世界里、一切皆文件、而文件是什么呢?文件就是一串二进制流而已、不管socket、还是FIFO、管道、终端、对我们来说、一切都是文件、一切都是流、在信息交换的过程中、我们都是对这些流进行数据的收发操作、简称为I/O操作(input and output)、往流中读出数据、系统调用read、写入数据、系统调用write、不过话说回来了、计算机里有这么多的流、我怎么知道要操作哪个流呢?做到这个的就是文件描述符、即通常所说的fd(file descriptor)、一个fd就是一个整数、所以对这个整数的操作、就是对这个文件(流)的操作、我们创建一个socket、通过系统调用会返回一个文件描述符、那么剩下对socket的操作就会转化为对这个描述符的操作、不能不说这又是一种分层和抽象的思想、
管道是Linux中很重要的一种通信方式,是把一个程序的输出直接连接到另一个程序的输入,常说的管道多是指无名管道,无名管道只能用于具有亲缘关系的进程之间,这是它与有名管道的最大区别。有名管道叫named pipe或者FIFO(先进先出),可以用函数mkfifo()创建。
从基础讲起,IO的原理和模型是隐藏在编程知识底下的,是开发人员必须掌握的基础原理,是基础的基础,更是通关大厂面试的必备知识。
Linux环境编程对于初学者来说,必须深刻理解重点概念才能更好地编写代码,实现业务功能,下面就几个重要的及常用的知识点进行说明。搞懂这几个概念后以免在将来的编码出现混淆。 系统调用 ❝所有的操作系统在其内核里都有一些内建的函数,这些函数可以用来完成一些系统级别的功能。在Linux系统使用的这样的函数叫做“系统调用”,英文是systemcall。这些函数代表了从用户空间到内核空间的一种转换。 ❞ 系统调用是Linux操作系统提供的服务,是编写应用程序与内核之间通信的接口,也就是我们所说的函数。相对于普通的函数
除了读取和写入设备外,大部分驱动程序还需要另外一种能力,即通过设备驱动程序执行各种类型的硬件控制。比如弹出介质,改变波特率等等。这些操作通过ioctl方法支持,该方法实现了同名的系统调用。
操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。
因为项目需要,接触和使用了Netty,Netty是高性能NIO通信框架,在业界拥有很好的口碑,但知其然不知其所以然。
有名管道叫named pipe或者FIFO(先进先出),可以用函数mkfifo()创建。
Linux 服务器处理网络请求有三种机制,select、poll、epoll,本文打算深入学习下其实现原理。
信号是 Linux 进程间通信的最古老的方式。信号是软件中断,它是在软件层次上对中断机制的一种模拟。
在了解进程状态之前,我们先来谈一谈阻塞与挂起的两个概念。所谓阻塞,就是指进程因为等待某种资源就绪,而导致的一种不推进状态。也就是我们常说的卡住了。
很多的小伙伴,被java IO 模型,搞得有点儿晕,一会儿是4种模型,一会儿又变成了5种模型。
题目是golang下文件锁的使用,但本文的目的其实是通过golang下的文件锁的使用方法,来一窥文件锁背后的机制。
现在操作系统都是采用虚拟存储器,操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操作系统将虚拟内存划分为两部分,一部分为内核空间,一部分为用户空间。对于32位操作系统,它的寻址空间(虚拟存储空间)为4G(2的32次方),linux操作系统中将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF)供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF)供各个用户进程使用,称为用户空间。
我一个SocketServer有500个链接连过来了,我想让500个链接都是并发的,每一个链接都需要操作IO,但是单线程下IO都是串行的,我实现多路的,看起来像是并发的效果,这就是多路复用!
在Linux中,文件加锁是通过使用文件锁(File Locks)来实现的。文件锁主要有两种类型:共享锁(Shared Lock)和排他锁(Exclusive Lock)。这些锁用于控制对文件的并发访问,以防止多个进程同时对同一文件进行读或写操作,从而保护文件的一致性。
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
进程进入到该状态进行阻塞 , 一旦 执行条件达成 , 立刻 中断阻塞 , 开始执行进程 , 进入 TASK_RUNNING 状态 ;
Linux/Unix五种I/O模型 内容来源,侵删。 游双-《Linux高性能服务器编程》 牛客网-Linux高并发服务器开发 ---- 阻塞-blocking 调用者调用了某个函数,然后等待这个函数返回,在这期间什么都不做,不停的去检查这个函数有没有返回,应用程序必须等这个函数返回才能进行下一步的动作。 即,针对阻塞I/O执行的系统调用可能因为无法立即完成而被操作系统挂起,直到等待的时间发生为止,才可以继续执行下一步的操作。 可能被阻塞的系统调用包括accept、send、rec
公众号《鲁大猿》 ,寻精品资料,帮你构建Java全栈知识体系 http://www.jiagoujishu.cn
在Linux操作系统中,mkfifo是一个非常重要的命令,它用于创建命名管道(named pipe),也称为FIFO(First In First Out)文件。命名管道是一种特殊的文件类型,允许不同进程之间进行通信,是进程间通信(IPC)的一种重要方式。在数据处理和分析中,mkfifo命令可以帮助我们实现进程间的数据交换和共享,极大地提高了数据处理的效率和灵活性。
所谓惊群现象,简单的来说就是当多个进程或线程在同时阻塞等待同一个事件时,如果该事件发生,会唤醒在等待的所有的进程/线程,但最终只可能有一个进程/线程对该事件进行处理,其他进程/线程会在失败后重新休眠,唤醒多个进程/线程这种不必要的行为会造成系统资源的浪费(涉及到进程的上下文切换)。而常见的惊群问题有accept惊群、epoll惊群。
同步、异步、阻塞、非阻塞都是和I/O(输入输出)有关的概念,最简单的文件读取就是I/O操作。而在文件读取这件事儿上,可以有多种方式。
Linux 内核源码 linux-5.6.18\kernel\sched\sched.h 中 , 定义的 struct sched_class 调度类结构体 , 就是 " 调度器 " 对应的类 ;
领取专属 10元无门槛券
手把手带您无忧上云