docker镜像怎么迁移到其他的服务器 http://www.talkwithtrend.com/Question/123589
本文通过linux网络虚拟化的基础功能NameSpace、veth pair、bridge、tap实现一个路由器的最小模型,从而实现云计算环境下处于不同网段的虚拟机可以跨网段互通。
在搭建Kubernetes的环境的时候,你可能会遇到一些问题,不!你会遇到很多问题。比如,首先你要实现跨物理机的容器访问——是不同物理内的容器能够互相访问,而不是你平常所看到的乱七八糟的端口映射。方案有很多,比如OVS、flannel、socketplane什么的,下面是我搭建etcd和flannel的过程,希望对需要这样的环境的人有所帮助,少走弯路。再说一次:跨物理机的容器之间能直接访问
上篇文章介绍了容器网络的单主机网络,本文将进一步介绍多主机网络,也就是跨主机的网络。总结下来,多主机网络解决方案包括但不限于以下几种:overlay、macvlan、flannel、weave、cacico 等,下面将分别一一介绍这几种网络, PS:本文仅从原理上对几种网络进行简单的对比总结,不涉及太多的细节。 overlay 俗称隧道网络,它是基于 VxLAN 协议来将二层数据包封装到 UDP 中进行传输的,目的是扩展二层网段,因为 VLAN 使用 12bit 标记 VLAN ID,最多支持 4094 个
此时可以尝试Ayu1容器 与 Ayu2容器 互相是否能ping通 Ayu1 ping Ayu2
之前详细介绍了calico的ipip、vxlan、bgp模式, 但是所有的k8s节点都是同网段的, 本篇使用ensp和workstation在自己家里就可以模拟测试跨网段k8s集群calico方案的纯bgp模式。
OpenStack在这几年风生水起。随着核心模块稳定性的提高,OpenStack已经有了很多大规模商用的案例,所有与云相关的,无论是商用软件还是开源平台都在积极地寻求着与OpenStack的对接,OpenStack正在成为云计算业界事实上的IaaS标准。 在网络这一口,OpenStack经历了由nova-network到Quantum再到Neutron的演进过程。我们首先来简要地看看各个版本网络的特征: 1)Nova-network是隶属于nova项目的网络实现,它利用了linux-bridge(早期,
OpenStack在这几年风生水起。随着核心模块稳定性的提高,OpenStack已经有了很多大规模商用的案例,所有与云相关的,无论是商用软件还是开源平台都在积极地寻求着与OpenStack的对接,OpenStack正在成为云计算业界事实上的IaaS标准。 在网络这一口,OpenStack经历了由nova-network到Quantum再到Neutron的演进过程。我们首先来简要地看看各个版本网络的特征: 1 Nova-network是隶属于nova项目的网络实现,它利用了linux-bridge(早期,目前
========================================================
brctl show br0 brctl addbr br0 brctl addif br0 eth0 ifconfig br0 down
今天我们来聊一聊容器如何跨主机通信,总所周知的是docker有多种网络模式:HOST、BRIDGE、null等,从多主机通信的应用场景出发,来谈已有的的解决方案。
1 集群基础 1.1 集群简介 1.1.1 集群基础 场景需求 满足不了用户需求 集群:资源扩展的解决方案 解决方案 三轴扩展 x轴: 复制或者克隆的方式 y轴: 配置升级或者资源增强的方式 z轴: 通过业务梳理和资源整合的方式,实现细节单独部署的一种扩展方式 访问效果 浏览器 - dns解析 - 反向代理 - 负载均衡 - web应用 - 数据库 - 存储 1.1.2 集群类型 类型简介 高扩展集群 LB 共同支撑一个业务
因此,今天我们拿出了GNU/Linux下最强的数据包分析武器——tcpdump,对容器网络进行分析。
自从Docker容器出现以来,容器的网络通信就一直是被关注的焦点,也是生产环境的迫切需求。容器的网络通信又可以分为两大方面:单主机容器上的相互通信,和跨主机的容器相互通信。下面将分别针对这两方面,对容器的通信原理进行简单的分析,帮助大家更好地使用docker。前面已经在Docker容器学习梳理--基础知识(2)这一篇中详细介绍了Docker的网络配置以及pipework工具。 docker单主机容器通信 基于对net namespace的控制,docker可以为在容器创建隔离的网络环境,在隔离的网络环境下,
首先必须了解Ceph里面的MON、OSD、MDS、MGR、RGW各种服务的软硬件需求,知道你规划的Ceph规模是多大,当前分配给对应容器的资源是否合适,不然到了后期你需要做各种硬件资源调整而不得不重启容器的时候,你的服务可用性会可能会大打折扣。总之就是一句话,硬件资源一步到位,不要瞎折腾。别让OOM成为常态!
一、MacVlan 实现Docker的跨主机网络通信的方案有很多,如之前博文中写到的通过部署 Consul服务实现Docker容器跨主机通信
在《如何实现一个虚拟路由器》中描述了如何通过linux网络虚拟化的基础功能NameSpace、veth pair、bridge、tap实现一个路由器的最小模型,从而实现云计算环境下处于不同网段的虚拟机可以跨网段互通。本文在此基础上继续拓展,从而实现内网访问外网的功能。
容器不是模拟一个完整的操作系统,而是对进程进行隔离,对容器里的进程来说它接触到的各种资源都是独享的,比虚拟机启动快、占用资源少。
为了实现,主机A和主机B的跨网段访问,我们需要通过路由把各个网段连接起来。并利用Linux Kernel的内部机制实现转发,以下为具体实现:
在之前的两篇文章中分别介绍了pod与主机连接并且上外网的原理及service的clusterIP和nodeport的实现原理,对于组织pod的网络这件事来说,还有最后一环需要打通,就是分布在不同集群节点的pod之间如何相互通信,本章我们来解决这最后一环的问题
在实际的业务场景中,业务组件之间的关系十分复杂,微服务的理念更是让应用部署的粒度更加细小和灵活。为了支持业务应用组件的通信,Kubernetes网络的设计主要致力于解决以下问题。
在上篇文章中,我们已经探讨了 VxLAN 的概念和基本原理,本文就基于 Linux 对 VxLAN 做一个实践。如果有相关概念不懂的可以先看那篇文章。
上回说到,docker自带的网桥br0,在跨宿主机通讯时,默认充当了VXLAN的VTEP,因此,会造成较大的互通开销。
两台PLC 分属于不同网段,但有数据通讯的需求,最典型的应用就是使用路由的模式来实现。在PLC侧需要使能“使用路由器”功能,并填写对应的网关地址,然后去调用相应的功能块进行通讯,如在S7-1500中调用 TSEND_C和TRCV_C去实现TCP通讯;当然在两台PLC间需要有支持路由功能的交换机来支持,如scalance xc208。这种通讯架构的典型使用方式可参考图1的示意。
通过第一章容器网络基础的学习,我们已经实现了单机容器间的互通、容器访问外部网络及容器对外提供服务。 在实际的应用场景中,为了保证业务的高可用性,我们的容器多是跨宿主机部署的,并且部署在不同宿主机上的容器会进行大量的网络通信。那么,怎么实现容器的跨宿主机通信呢?
iptables来源:《Linux网络技术》王波(第一版)。中关于iptables的命令介绍。见增补信息。
我们找了一台安装了Docker服务的云服务器172.16.8.3,从这台机器上ping跨网段机器 172.17.8.24
此种方式是将容器的某个端口映射到宿主机的某个端口,其它主机访问容器提供的服务需要通过宿主机的IP进行访问:
ping的错误回显的内容与icmp的差错消息相关的,根据回显报错的节点ip和内容,我们能知道那个节点出现问题,什么问题?
容器的跨主机通信主要有两种方式:封包模式和路由模式。上一篇文章演示了使用VXLAN协议的封包模式,这篇将介绍另一种方式,利用三层网络的路由转发实现容器的跨主机通信。
VXLAN是Virtual eXtensible Local Area Network的缩写,RFC 7348的标题“A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks”,说明了VXLAN是一个在传统Layer 3网络上架设出来的Layer 2 overlay网络。RFC Abstract如下:
1 实验目的 该实验通过Open vSwitch构建Overlay的VxLAN网络,更直观的展现VxLAN的优势。在实验过程中,可以了解如何建立VxLAN隧道并进行配置,并实现相同网段和不同网段之间的通信。 2 实验原理 VxLAN 是 Virtual eXtensible LANs 的缩写,它是对 VLAN 的一个扩展,是非常新的一个 tunnel 技术,在Open vSwitch中应用也非常多。Linux 内核的 upstream 中也刚刚加入 VXLAN 的实现。相比 GRE tunnel 它有着很好
一、Openstack网络基础 下面对Openstack和Neutron的介绍,要从几个关键词入手。 1. 三代网络 在网络这一口,OpenStack经历了由nova-network到Quantum再到Neutron的演进过程。我们直观地来看看三代网络的对比分析: 1)Nova-network是隶属于nova项目的网络实现,它利用了linux-bridge(早期,目前也支持OVS)作为交换机,具备Flat、Flat DHCP、VLAN三种组网模式。优点是性能出色,工作稳定,支持mu
网络ping不通是网络中出现频率最高的故障之一,同时也是最让人抓狂的故障,基本上大部分人都遇到过了,如果在项目中出现网络ping不通,没有一个有序的方法去排除解决,那么很难入手,也是讨论最多的问题之一,有不少项目经理到项目中经常遇到。我们来总结下网络ping不通是什么原因?
刚开始接触容器集群的人会发现,与在单节点上使用容器相比,容器集群一个很复杂的领域就是网络。Kubernetes 作为容器编排领域的事实标准,对容器集群的网络进行了合理抽象,并开放了容器网络标准 CNI,供各公司根据自身应用场景和底层基础设施选用开源方案或者自行实现一套网络插件。本文主要介绍腾讯云容器平台针对私有化不同场景的一些网络方案实践。
1、配置 配置 IP 地址部分略 地址部分略 2、置 配置 R1 为 为 DHCP 服务器,能够跨网段为 192.168.2.0/24 配 网段自动分配 IP 地址
k8s的网络模型假定了所有的Pod都在一个可以直接连通的扁平的网络空间中, 这在GCE(Google Compute Engine)里面是线程的网络模型, Kubernetes假定这个网络已经存在. 而在私有云里搭建Kubernetes集群, 就不能假定这个网络已经存在了. 我们需要自己实现这个网络假设, 将不同节点上的Docker容器之间的互相访问先打通, 然后运行Kubernetes.
VPN(Virtual Private Network):也称VRF(Virtual Route Forwarding,虚拟路由及转发) ,目的是解决不同企业私网地址段相同,为了防止冲突,采用将相同私网地址放到不同的VRF表中。
由上图我们可以看到创建的网络ID为4554d78082da ,使用ip addr查看本机网络:
前言 网络虚拟化相对计算、存储虚拟化来说是比较抽象的,以我们在学校书本上学的那点网络知识来理解网络虚拟化可能是不够的。 在我们的印象中,网络就是由各种网络设备(如交换机、路由器)相连组成的一个网状结构,世界上的任何两个人都可以通过网络建立起连接。 带着这样一种思路去理解网络虚拟化可能会感觉云里雾里——这样一个庞大的网络如何实现虚拟化? 其实,网络虚拟化更多关注的是数据中心网络、主机网络这样比较「细粒度」的网络,所谓细粒度,是相对来说的,是深入到某一台物理主机之上的网络结构来谈的。 如果把传统的网络看作「宏观
Flannel是一种基于overlay网络的跨主机容器网络解决方案,即将TCP数据包封装在另一种网络包里面进行路由转发和通信,Flannel是CoreOS开发,专门用于docker多机互联的一个工具,让集群中的不同节点主机创建的容器都具有全集群唯一的虚拟ip地址
Docker 安装时会自动在 host 上创建三个网络,我们可用docker network ls 命令查看,如:
注: ARP属于局域网通信的协议标准,因此一台主机不能跨网络向另一台主机发起ARP请求
先解释几个名词: LB(Load Balancer) :负载均衡器,也就是装有LVS(ipvsadm)的server VIP(Virtual IP):虚拟IP,也就是给远程客户端(网民)提供服务的外部IP,比如,提供80服务,域名是www.a.com,则www.a.com 对应的A记录就是VIP LD(Load Balancer Director):同LB,负载均衡调度器 real server:即后端提供真是服务的server,比如你提供的是80服务,那你机器可能就是装着Apache这中web服务器 DI
在当今数字化时代,网络已经成为了我们生活和工作中不可或缺的一部分,在智能工厂的场景中,设备因为需要联网才能接入数字化管理系统,常常会遇到各种问题。
在前面的文章《如何在集群外节点跨网段向HDFS写数据》和《外部客户端跨网段访问Hadoop集群方式(续)》中介绍了如何在集群外的客户端节点上访问Hadoop集群,本篇文章在前面文章的基础上基于Kerberos环境的CDH集群介绍,如何在集群外客户端跨网段向Kerberos环境的Hadoop集群提交MapReduce和Spark作业。
电子时钟系统在广电、金融、国防、工业等领域广泛应用,为其提供高精度准确的时间信息。本文就电子时钟系统在采购和使用中常见的问题进行讨论说明。
过去,数据库一体机通常采用X86服务器和InfiniBand网络的硬件环境。然而,InfiniBand网络的部署和维护成本高昂,需要专门的硬件和管理技能。现在,RoCE网络可以提供与InfiniBand网络相当的性能。因此使用RoCE网络替代InfiniBand网络,可以降低成本、提高组网的灵活性和可扩展性,更容易地进行部署和运维。
领取专属 10元无门槛券
手把手带您无忧上云