博客地址 : http://blog.csdn.net/shulianghan/article/details/42408137
遥想当年上小学的时候,语文是先学 人口手 上中下;数学就是先数数,然后加减乘除了。
🚀🚀这个地方的代码还是很简单的,主要就是去哪找CCM的地址,不过也不算难找,比如CCGR0,就是0x020c4068。
ARM 开发板启动方式 : 可以选择从 NorFlash , NandFlash , SD 卡 启动 三种方式 , 这里我们着重介绍 NandFlash 启动的情况 ;
参考手册 : S3C2440.pdf , 章节 : 7 CLOCK & POWER MANAGEMENT , Page 235;
2 发生了各种声音,如何处理这些声音 :: 有远处的猫叫(听而不闻,忽略) :: 门铃声有快递(开门收快递) :: 小孩哭声(打开房门,照顾小孩) 3 母亲的处理 :: 只会处理门铃声和小孩哭声 :: a 现在书中放入书签,合上书(保存现场) :: b 去处理 (调用对应的中断服务程序) :: c 继续看书(恢复现场)
IIC EEPROM,采用的是IIC通信协议。 IIC通信协议具有的特点: 【1】简单的两条总线线路,一条串行数据线(SDA),一条串行时钟线(SCL); 【2】串行半双工通信模式的8位双向数据传输,位速率标准模式下可达100Kbit/s; 【3】一种电可擦除可编程只读存储器,掉电后数据不丢失,由于芯片能够支持单字节擦写,且支持擦除的次数非常之多,一个地址位可重复擦写的理论值为100万次,常用芯片型号有 AT24C02、FM24C02、CAT24C02等,其常见的封装多为DIP8,SOP8,TSSOP8等;
当我们学习C语言的时候,我们会写个Hello程序。那当我们写ARM程序,也该有一个简单的程序引领我们入门,这个程序就是点亮LED。
BootLoader的目标是正确调用内核的执行,由于大部分的BootLoader都依赖于CPU的体系结构。因此大部分的BootLoader都分为两个步骤启动。依赖于CPU体系结构(如设备初始化等)的代码都放在stage1。而stage2一般使用C语言实现,能够实现更加复杂的功能,代码的可移植性也提高。
内存容量 = L-Bank 个数 * L-Bank 容量 L-Bank 个数 一般 是 4 个 L-Bank 容量 = 单元格数目 * 单元格容量 内存容量 = 4 * L-Bank 单元格数目 * 单元格容量
ADC指令用于把两个操作数相加,再加上CPSR中的C条件标志位的值,并将结果存放到目的寄存器中。
计算机的存储机构包括了 CPU 的 寄存器,用于临时缓存指令数据,还有 高速缓存 Cache、内存 和 外存,如下图所示。
参考之前uboot使用的start.S, init.c来修改uboot代码新的uboot链接地址位于0,且在arm-linux-ld时加了"-pie"选项, 使得u-boot.bin里多了"*(.rel*)", "*(.dynsym)",从而程序非常大,不利于从NAND启动(重定位之前的启动代码应该少于4K). 所以接下来修改代码,并取消"-pie"选项. 使用grep “-pie” * -nR找到:
原文链接:https://www.collabora.com/news-and-blog/blog/2019/04/15/an-ebpf-overview-part-2-machine-and-bytecode/
编译器:友善之臂mini2440光盘自带arm-linux-gcc 4.4.3
上一节S3C2440移植uboot之新建单板_时钟_SDRAM_串口移植uboot初始化了时钟,配置了支持串口,这一节我们继续修改uboot支持NAND启动。
GPIO 简介 : 英文全称 General-Purpose Input / Output Ports, 中文翻译为 : 通用输入输出端口;
之前群里有个同学向大家提出了类似这样的问题。随后这位同学公布了答案:右移运算是向下取整,除法是向零取整。这句话对以上现象做了很好的总结,可是本质原因是什么呢?
指令是CPU机器指令的助记符,经过编译后会得到一串10组成的机器码,可以由CPU读取执行。伪指令本质上不是指令(只是和指令一起写在代码中),它是编译器环境提供的,目的是用来指导编译过程,经过编译后伪指令最终不会生成机器码。所以指令和伪指令最大区别就是编译完之后会不会生成机器码。
CPRS 设置 值 分析 : 该寄存器需要考虑两个方面, ① 设置处理器的 SVC 工作模式, ② 关闭中断 ;
摘要总结:本篇文章主要介绍了uboot的硬件初始化流程。首先介绍了uboot的入口函数,然后分析了uboot的硬件初始化流程。在初始化流程中,uboot执行以下操作:1.设置CPSR,屏蔽中断,进入管理模式;2.设置时钟;3.清除MMU的页表,将RAM映射到物理地址;4.设置栈;5.设置启动参数;6.跳转到应用程序。此外,文章还分析了uboot的硬件初始化流程,包括设置CPSR、屏蔽中断、进入管理模式、设置时钟、清除MMU的页表、设置栈、设置启动参数和跳转到应用程序。
打开uboot.lds,发现链接地址为0,所以新的uboot只能在nor flash运行。运行开始文件为start.o。
博客地址 : http://blog.csdn.net/shulianghan/article/details/42462795
我们在第 1 篇文章中介绍了 eBPF 虚拟机,包括其有意的设计限制以及如何从用户空间进程中进行交互。如果你还没有读过这篇文章,建议你在继续之前读一下,因为没有适当的介绍,直接开始接触机器和字节码的细节是比较困难的。如果有疑问,请看第 1 部分开头的流程图。
GPFDAT的第4位为0-低电平,1-高电平。(注:corresponding,相应的)
该文介绍了如何通过修改配置、开启ICAHE等方法来加快内核启动速度,并给出了具体的代码示例。
编译测试: 1.将写好的uboot复制到linux下面 2.make编译,然后将错误的地方修改,生成boot.bin (编译出错的解决方案:http://www.cnblogs.com/lifexy/
某日,风和日丽,老李老板酒过三巡,气定闲神,挥毫泼墨,在小李老板孝敬的上等宣纸上写下了 Hello World!
S3C2440的CPU可以直接给SDRAM发送命令、给Nor Flash发送命令、给4K的片上SDRAM发送命令,但是不能直接给Nand Flsh发送命令
操作系统有三个特权级别:R0(Ring0)、R1(Ring1)、R2(Ring2)和R3(Ring3)。R0相当于内核态,R3相当于用户态,不同级别能够运行不同的指令集合。
答: CPU大爷使用不同的地址,访问RAM,GPIO,FLASH。从这个角度看,GPIO、RAM、Flash地位相同。
本节的内容以知识为主,比较少技巧和经验。读者只需要了解,不需要熟练。如果你熟悉x86架构,请直接跳过这节。
ARM 存储 体系 简介 : ARM 处理器分为三个等级, 处理器寄存器 -> TCM 存储器 -> 辅助存储器, 由上到下, 处理速度依次变慢, 但是存储空间依次增加 ;
1. 测试乘数最低位是否为1,是则给乘积加上被乘数,将结果写入乘积寄存器;
格式: teq oprd1,oprd2 TEQ指令用于把一个寄存器的内容和另一个寄存器的内容或立即数进行按位的异或运算,并根据运算结果更新CPSR中条件标志位的值。该指令通常用于比较操作数1和操作数2是否相等。(EOR指令也是实现异或运算,只是不更新CPSR)
编写一个简单的终端输出“Hello World!!”的小程序,首先写好一些数据包括CONTROL和DATA的地址以及字符串Hello World,然后将CONTROL和DATA的地址存储在寄存器中以之作为基址,将字符串首地址写入DATA,将4写入CONTROL
ORR指令用于在两个操作数上进行逻辑或运算,并把结果放置到目的寄存器中。操作数1应该是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令常用于设置操作数1的某些位。 指令示例:ORR R0,R0,#3;该指令设置R0的0、1位,其余位保持不变。
这是一篇关于ARM32指令集的总结文章,后续会不断输出一系列逆向分析破解相关的文章。
Bootloader的启动过程可以分为单阶段、多阶段两种。通常多阶段的 Bootloader能提供更为复杂的功能以及更好的可移植性。从固态存储设备上启动的 Bootloader大多都是两阶段的启动过程。第一阶段使用汇编来实现,它完成一些依赖于CPU体系结构的初始化,并调用第二阶段的代码;第二阶段则通常使用C语言来实现,这样可以实现更复杂的功能,而且代码会有更好的可读性和可移植性。 一般而言,这两个阶段完成的功能可以如下分类:
1.文章简述2. YUV转RGB的代码优化问题2.1 浮点转换2.2 浮点转整形2.3 浮点运算和整数运算在PC上模拟的效果3. x1000上进行对比测试3.1 使用软浮点测试一帧图像转换时间3.2 开启FPU后转换图像3.3 开启FPU进行测试3.3.1 基本思路3.3.2 程序设计4. 总结
该文介绍了CMP和TEQ指令的功能和用法,以及相关的操作数、操作符和标志位。
bootloader 是什么?如果你看到了这篇文章,肯定已经知道答案了,所以这里就不赘述了。这篇文章主要是根据韦东山老师的视频,从零开始写一个最简单的 bootloader,每一行代码都是手动输入。虽然直接看一遍视频,也能够理解其中的步骤或者原理,但是根据视频敲一遍之后,印象才是最深刻的。
S3C2440是System On Chip(SOC),在芯片上不仅仅有CPU还有一堆外设。
使用ADD/SUB/LSL/LSR/AND/ORR等指令,完成基本数学/逻辑运算。
(原赛题直达车:一道即将尘封十几年的封印,不来尝试解开吗?) 本次解题报告由微信算法大神yueqi提供。在腾讯内部赛道中,来自微信的yueqi同学在赛题发布6小时后即破解封印、完成闯关,成为内部赛首届冠军。解题思路千万条,脑洞大开第一条,也欢迎小伙伴们在文末留言分享自己的解题报告链接!
寄存器间接寻址就是以寄存器中的值作为操作数的地址,而操作数本身存放在存储器中。例如以下指令:
那么多对于我们初学者来说要学习哪种风格呢?答案是肯定的,学习GNU风格的汇编代码,因为做Linux驱动开发必须掌握的linux内核、uboot,而这两个软件就是GNU风格的。
第4行显示了BenchmarkF 执行了495次,每次的执行平均时间是2097269纳秒, 每次操作有1次内存分配,每次分配了24Byte大小的内存空间
领取专属 10元无门槛券
手把手带您无忧上云