众所周知,硬实时的概念,其核心并非追求速度的极致,而是确保系统能在预定的、可重复的时间范围内给予确定的响应。这意味着,实时系统的正确性不仅在于计算逻辑的正确,更在于结果的产生时间是否符合预期。以汽车为例,当发生碰撞时,安全气囊必须在极短的时间内弹开,否则可能无法起到应有的保护作用。
很久没有写技术文章了,做码农难,做养娃的码农更难,趁着娃看动画片的机会,受着王菲童鞋《我和我的祖国》歌唱精神的鼓舞,我要来说几句。
版权声明:本文为博主原创文章,转载请注明源地址。 https://blog.csdn.net/10km/article/details/82969947
共享变量:multiprocessing.Value 共享数组:multiprocessing.Array
最后运行的结果不是固定的,有可能是0、-1,如果有这个ticket_num变量代表是库存的话,那么就会出现库存为负数的情况,所以需要引入线程同步来保证线程安全。
嵌套锁这个概念,主要是为了根据编程中的一种情形引申出来的。什么情况呢,我们可以具体说明一下。假设你在处理一个公共函数的时候,因为中间涉及公共数据,所以你加了一个锁。但是,有一点比较悲哀。这个公共函数自身也加了一个锁,而且和你加的锁是一样的。所以,除非你的使用的是信号量,要不然你的程序一辈子也获取不了这个锁。
在多线程编程中,线程死锁是一种常见的问题。当多个线程相互等待对方所持有的资源时,会导致线程陷入无法继续执行的状态。本文将介绍线程死锁的原因,并提供一些解决方法,以帮助开发人员避免和解决线程死锁的缺陷。
实时系统要求对事件的响应时间不能超过规定的期限,响应时间是指从某个事件发生到负责处理这个事件的进程处理完成的时间间隔,最大响应时间应该是确定的、可以预测的。
可以看到,lock()方法首先在”this”上同步,然后在monitorObject上同步。如果isLocked等于false,因为线程不会继续调用monitorObject.wait(),那么一切都没有问题 。但是如果isLocked等于true,调用lock()方法的线程会在monitorObject.wait()上阻塞。
关于性能优化这是一个比较大的话题,在《由12306.cn谈谈网站性能技术》中我从业务和设计上说过一些可用的技术以及那些技术的优缺点,今天,想从一些技术细节上谈谈性能优化,主要是一些代码级别的技术和方法。本文的东西是我的一些经验和知识,并不一定全对,希望大家指正和补充。 在开始这篇文章之前,大家可以移步去看一下酷壳以前发表的《代码优化概要》,这篇文章基本上告诉你——要进行优化,先得找到性能瓶颈! 但是在讲如何定位系统性能瓶劲之前,请让我讲一下系统性能的定义和测试,因为没有这两件事,后面的定位和优化无从谈起。
Aegean是微服务下的备份方案,目的是在微服务架构下保持Replication的高效性。
死锁是一种无限的互相等待的状态,两个或两个以上的线程或进程构成一个互相等待的环状。以两个线程为例,线程一持有A锁同时在等待B锁,而线程二持有B锁同时在等待A锁,这就导致两个线程互相等待无法往下执行。现实生活中一个经典的死锁情形就是四辆汽车通过没有红绿灯的十字路口,假如四辆车同时到达中心的,那么它们将形成一个死锁状态。每辆车拥有自己车道上的使用权,但同时也在等另外一辆汽车让出另外一条道的使用权
线程锁死是指等待线程由于唤醒其所需的条件永远无法成立,或者其他线程无法唤醒这个线程而一直处于非运行状态(线程并未终止)导致其任务 一直无法进展。
很多人学完python在问面试笔试该怎么准备,因此小编总结并精选了近200年的python面试和笔试题,总共分为十个门类100多道python面试题,愿各位小伙伴在寻找工作的同时更加顺利
死锁是多线程编程里面非常常见的一个问题,作为一个中高级开发者是必须掌握的内容,今天我们来学习一下死锁相关的知识。
这是 Java 面试 的热门问题之一, 也是多线程的编程中的重口味之一, 主要在招高级程序员时容易被问到, 且有很多后续问题。
作者:dustinzhou,腾讯 IEG 运营开发工程师 epoll 是 linux 特有的一个 I/O 事件通知机制。很久以来对 epoll 如何能够高效处理数以百万记的文件描述符很有兴趣。近期学习、研究了 epoll 源码,在这个过程中关于 epoll 数据结构和作者的实现思路产生出不少疑惑,在此总结为了 10 个问题并逐个加以解答和分析。本文基于的内核源码版本是2.6.39 版本 。 Question 1:是否所有的文件类型都可以被 epoll 监视? 答案:不是。看下面这个实验代码: #inc
相信需要了解这方面的知识的小伙伴,已经基本对进程间通信和线程间通信有了一定了解。例如,进程间通信的机制之一:共享内存(在这里不做详解):多个进程可同时访问同一块内存。如果不对访问这块内存的临界区进行互斥或者同步,那么进程的运行很可能出现一些不可预知的错误和结果。
Oracle默认不自动提交,需要用户手动提交,需要在写commit;指令或者点击commit按钮 (2) 分页查询 MySQL是直接在SQL语句中写”select… from …where…limit x, y”,有limit就可以实现分页
如果能确认某个加锁的对象不会逃逸出局部作用域,就可以进行锁删除。这意味着这个对象同时只可能被一个线程访问,因此也就没有必要防止其它线程对它进行访问了。这样的话这个锁就是可以删除的。这个便叫做锁消除,本文是JVM实现机制的系列文章,这也正是今天要讲的主题。
package main import ( "fmt" "sync" "time" ) func main() { rw := new(sync.RWMutex) for i := 0; i < 2; i++ { // 建立两个写者 go func() { for j := 0; j < 3; j++ { rw.Lock() // 写 rw.Unlock() } }() } for i := 0; i < 5;
说项目,项目问的非常深(本人提到之前做过的一篇关于FULL GC的问题定位和优化的项目以及一个多并发的项目)
在前期文章中讲解了服务端压力测试的方法及分布式平台搭建,但是对于压力测试结果的分析没有一个系统的思路,在压力测试结果不符合性能指标时无从下手,也无法向开发提出有效的优化性能的方法。在对多个项目分析后,总结出一个通用的分析思路,可以快速定位性能瓶颈。
在多年前,linux还没有支持对称多处理器SMP的时候,避免并发数据访问相对简单。
2、html和CSS放在页面上部,javascript放在页面下面,因为js加载比HTML和Css加载慢,所以要优先加载html和css,以防页面显示不全,性能差,也影响用户体验差
aof 类似于 mysql 的二进制日志,它把所有的操作都记录在日志里。而 rdb 就是真正存储的数据,相当于把内存中 redis 的所有数据快照到了磁盘中。
在支持可抢占的系统中,一个进程的therad_info信息定义如上。其中preempt_count代表的是该进程是否可以被抢占,根据注释的说明当peermpt_count等于0的时候当前进程就可以被抢占,当小于0存在bug,当不等于0也就是大于0说明当前进程不可以被抢占。不可抢占的原因很多,比如当前进程在中断上下文中或者使用了锁(spin_lock的过程中会disable掉抢占的)。至于当前是什么原因不能被抢占,就需要看peermpt_count每个字段的含义。
负载均衡:在动态负载均衡器上设置动态分发负载的机制后,如果发现某个应用服务器上的硬件资源已经达到极限,动态负载均衡器会将后续请求发送到其他负载较轻的应用服务器上。此时若发现动态负载均衡器没有起到作用,则可以认为是网络瓶颈;
每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。
一、比较HashMap为什么不是线程安全的,及HashTable是如何实现的安全的,并且HashTable有什么问题?
Java 并发编程中,锁是避免并发冲突的重要机制,但如果使用不当,容易产生死锁和活锁等问题,甚至导致饥饿等高级问题。下面将对死锁、活锁以及饥饿这三个问题进行详细的介绍和区分。
当多个线程同时共享 ,同一个全局变量或静态变量,在做写的操作时,可能会发生数据冲突问题。
4.因为项目中用到FreeRTOS,讲讲FreeRTOS的调度原理; 答:FreeRTOS从OS 操作系统支持三种调度方式:抢占式调度,时间片调度和合作式调度。 实际应用主要是抢占式调度和时间片调度
清单一代码有点长,但是逻辑很简单,有两个临界区变量lockA,lockB,线程A先获取到lockA在获取lockB,线程B则与之相反顺序获取锁,那么就可能会有以下情况: 线程A获取到lockA之后发现lockB已被线程B获取,那么此时线程A进入blocked状态。同理线程B获取lockA时发现其被线程A获取,那么线程B也进入blocked状态,那么这就是死锁。
原文地址: https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-40.html
大多数内核,包括xv6,交错执行多个活动。交错的一个来源是多处理器硬件:计算机的多个CPU之间独立执行,如xv6的RISC-V。多个处理器共享物理内存,xv6利用共享(sharing)来维护所有CPU进行读写的数据结构。这种共享增加了一种可能性,即一个CPU读取数据结构,而另一个CPU正在更新它,甚至多个CPU同时更新相同的数据;如果不仔细设计,这种并行访问可能会产生不正确的结果或损坏数据结构。即使在单处理器上,内核也可能在许多线程之间切换CPU,导致它们的执行交错。最后,如果中断发生在错误的时间,设备中断处理程序修改与某些可中断代码相同的数据,可能导致数据损坏。单词并发(concurrency)是指由于多处理器并行、线程切换或中断,多个指令流交错的情况。
在多线程环境下,线程同步是确保数据一致性、防止竞态条件的关键。Java中的synchronized关键字提供了线程同步机制。本文将介绍synchronized的工作原理,常见问题、易错点及其避免策略,并给出代码示例。
我发现学习 RTOS 是学习 Linux 内核的好方法。大有弯道超车的可能。 1. 任务堆栈 1.1 任务栈大小确定 1.2 栈溢出检测机制 2. 任务状态 3. 任务优先级 3.1任务优先级说明 3.2 任务优先级分配方案 3.3 任务优先级与终端优先级的区别 4. 任务调度 4.1 调度器 5. 临界区、锁与系统时间 5.1 临界区与开关中断 5.2 锁 5.3 FreeRTOS 系统时钟节拍和时间管理 一、 单任务系统(裸机) 主要是采用超级循环系统(前后台系统),应用程序是一个无限的循环,循环中调用
给定一个字符串 s 表示一个整数嵌套列表,实现一个解析它的语法分析器并返回解析的结果 NestedInteger 。
最近在做一个订单的钉钉审批功能,钉钉审批通过之后,订单更新审核状态,然后添加一条入库,并且更新入库状态:
(1)管理方式不同。栈由操作系统自动分配释放,无需手动控制;堆的申请和释放工作由程序员控制,容易产生内存泄漏。
博主整理了 2022 年最新、最全的 Java 面试题,题目涉及 Java 基础、集合、多线程、IO、分布式、Spring全家桶、MyBatis、Dubbo、缓存、消息队列、Linux…等等。
TiFlash 初期存在一个棘手的问题:对于复杂的小查询,无论增加多少并发,TiFlash 的整机 CPU 使用率都远远不能打满。如下图:
首页_码到城攻码到城攻分享但不限于IT技术经验技巧、软硬资源、所闻所见所领会等,站点提供移动阅读、文章搜索、在线留言、支付打赏、个人中心、免签支付等功能
我们可以把内核想象成一个服务器,专门响应各种请求。这些请求可以是CPU上正在运行的进程发起的请求,也可以是外部的设备发起的中断请求。所以说,内核并不是串行运行,而是交错执行。既然是交错执行,就会产生竞态条件,我们可以采用同步技术消除这种竞态条件。
并发是为了提升程序的执行速度,但并不是多线程一定比单线程高效,而且并发编程容易出错。若要实现正确且高效的并发,就要在开发过程中时刻注意以下三个问题: 上下文切换 死锁 资源限制 接下来会逐一分析这三个问题,并给出相应的解决方案。 问题一:上下文切换会带来额外的开销 线程的运行机制 一个CPU每个时刻只能执行一条线程; 操作系统给每条线程分配不同长度的时间片; 操作系统会从一堆线程中随机选取一条来执行; 每条线程用完自己的时间片后,即使任务还没完成,操作系统也会剥夺它的执行权,让另一条线程执行 什么是“上下文
image.png 网络 三次握手的原因? 三次握手TCP协议建立连接的过程。 原因或目的是为了证明客户端和服务端都有发送和接收的能力。原理: 第一次:客户端发送SYN包给服务端 第二次:服务端接收后在SYN包中的序列号+1 (即SYN+ACK包) 发送给客户端 第三次:客户端收到服务端的SYN包后,在SYN包中的序列号+1后 (ACK包) 发送给服务端 为啥四次挥手? 四次挥手是TCP释放连接的过程。 原因:客户端和服务端会各自发送1次和回复1次,共4次 tcp/udp分别的应用场景? tcp准确度高
领取专属 10元无门槛券
手把手带您无忧上云