我们可以在执行shell脚本时实时传递参数从而指定某些具体的参数(在本例中包括表格的样式、颜色等),脚本中获取参数的格式为$n。其中除n为0表示执行的文件名外,1表示第一个参数,2表示第二个参数,以此类推。
子查询 可以分为: 单行单列(就是一个值) 单行多列(就是有一行,这一行有很多不同列数据) 多行单列(同一列不同的数据) 多行多列(可以说就是一张表了吧)
在使用标签制作软件制作标签时,我们需要根据标签纸的实际尺寸在标签软件中进行设置。因为只有将标签纸的实际尺寸跟标签软件中的纸张尺寸设置成一致的,才能打印到相应的纸张上。例如常见的一行多列的标签该怎么设置呢?接下来就带大家学习下在标签制作软件中设置1行多列标签的方法:
ls 命令是 linux 下最常用的命令,是单词 list 的缺省值,用于列出目录下的所有内容及权限
云豆贴心提醒,本文阅读时间7分钟 sort是什么 Sort是用于对单个或多个文本文件内容进行排序的Linux程序。 Sort命令以空格作为字段分隔符,将一行分割为多个关键字对文件进行排序。 请注意,除
DataFrame对象的explode()方法可以按照指定的列进行纵向展开,一行变多行,如果指定的列中有列表则列表中每个元素展开为一行,其他列的数据进行复制和重复。
Pandas是一个强大的数据分析库,它的Series和DataFrame数据结构,使得处理起二维表格数据变得非常简单。
上一期介绍了将文件加载到Pandas对象,这个对象就是Pandas的数据结构。本次我们就来系统介绍一下Pandas的数据结构。
最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。
awk 是一个强大的文本处理工具,它不仅是 Linux 中,也是其他环境中现有的功能最强大的数据处理引擎之一。相对于 grep 的查找,sed 的编辑,awk 在其对数据分析并生成报告时,显得尤为强大。简单来说 awk 就是把文件逐行的读入,以空格为默认分隔符将每行切分,切开的部分再进行各种分析处理。awk 的名字来源于他的三个创始人,Alfred Aho 、Peter Weinberger 和 Brian Kernighan 姓氏的首个字母。
3.复制划定区域,再进行黏贴,选择“仅复制数据”,这样一来,划定区域的公式会被消去,最后把不需要的数据进行删除就好。
https://github.com/naturefwvue/nf-vue3-ant
Python按照某些列去重,可用drop_duplicates函数轻松处理。本文致力用简洁的语言介绍该函数。
在文件的操作过程中,因为文件过多,往往需要进行一下排序,排序方法也就是从小到大排序或者从大到小排序。比如我们从nginx日志中需要找到访问量最长的url,那就需要对请求时间进行一个排序,根据请求时间长短排序后在打印后面的url就能清楚的知道那个url有问题了,废话先不说,看方法:
HBase数据模型(1) HBase数据模型(2) 1.0 HBase的特性 Table HBase以表(Table)的方式组织数据,数据存储在表中。 Row/Column 行(Row)
以下示例都使用加载的 gapminder.tsv 数据集进行操作,注意将 year 这一列设置为行标签。
转自:https://yq.aliyun.com/articles/213705?utm_content=m_31236 hbase中的宽表是指很多列较少行,即列多行少的表,一行中的数据量较大,行数
可能某些原因下,需要将一些数据结构进行改变,如将一行数据拆分成多行,或一列数据拆分为多列,甚至一个多行多列的数据区域,需要将指定行列数量重新进行调整。
在处理数据过程中,会需要将一条数据拆分为多条,比如:a|b|c拆分为a、b、c,并结合其他数据显示为三条数据。
把表单需要的属性,统统放入json里面,然后用require(方便) 或者aioxs(可以热更新)加载进来,这样就可以实现动态渲染了。 比如要实现公司信息的添加、修改,那么只需要加载公司信息需要的json即可。 想要实现员工信息的添加、修改,那么只需要加载员工信息需要的json。
之前写 datamash 的使用教程 linux 极简统计分析工具 datamash 必看教程,收到了一位读者的私信,内容如上。
注意: 代码里面都有比较详细的注释 项目代码全部已经上传至 码云 和 Github,两个仓库我会同步更新
在 Octave 中我们可以直接创建向量,使用 空格 或者 逗号 来分隔列;使用 分号来分隔行.
开本系列,谈谈一些有趣的 CSS 题目,题目类型天马行空,想到什么说什么,不仅为了拓宽一下解决问题的思路,更涉及一些容易忽视的 CSS 细节。 解题不考虑兼容性,题目天马行空,想到什么说什么,如果解题中有你感觉到生僻的 CSS 属性,赶紧去补习一下吧。 不断更新,不断更新,不断更新,重要的事情说三遍。 谈谈一些有趣的CSS题目(一)-- 左边竖条的实现方法 谈谈一些有趣的CSS题目(二)-- 从条纹边框的实现谈盒子模型 谈谈一些有趣的CSS题目(三)-- 层叠顺序与堆栈上下文知多少 谈谈一些有趣的CSS题目
SQL是IT行业很多岗位都要求具备的一项能力,对于数据岗位而言更是如此,甚至说扎实的SQL基础也往往是入职这些岗位的必备技能。而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。
上一篇写了从全局的角度说数据库优化这件事情,我们面试经常会被问到数据库优化这块,我们很多时候能回答一些大而化之的策略,例如主从分离,分表分库之类,添加合理的索引,那继续追问,用的什么中间件主从分离,用的什么策略进行分表分库,什么是合理的索引,加了索引表扫描少了多少行,什么情况下索引会失效,好吧,笑容逐凝固,不知如何作答了,本篇就优先围绕sql查询优化本身来聊这个事情;
SOAR(SQL优化器和重写器)是一个对SQL进行优化和改写的自动化工具。由小米人工智能与云平台的数据库团队开发与维护。
表格布局中可以将元素放进设置好的单元格里,将网页进行分列分行的布局,但是表格布局有很大的局限性,现在基本上不再使用表格布局,只是在有表格的时候使用表格来进行局部布局。与此同时在css3中出现了多列布局的方式,来替代表格的多列布局方式。
经常会碰到列数特别多的文件,而屏幕又不足以放下这么多列;即便能放下,也不容易清晰的辨别出想提取的信息在第几列。 根据我们前面的学习,可以用一行命令或简单的写一个bash脚本来处理这个问题。 命令如下,命令的解释见 Linux学习-文件排序和FASTA文件操作。 ```bash ct@ehbio:~$ vim test ct@ehbio:~$ cat test sample A B C D E F G H ID1 1 2 3 4 5 6 7 8 ID2 1 2 3 4 5 6 7 8 ID3 1 2 3 4
在数据分析、数据可视化领域,Pandas的应用极其广泛;在大规模数据、多种类数据处理上效率非常高。
前几天发表了一篇推文,分享了Pandas中非常好用的一个API——explode,然而今天又发生了戏剧性的一幕:因Pandas版本过低系统提示'Series' object has no attribute 'explode'!好吧,好用的东西永远都是娇贵的,这个道理没想到在代码中也适用。所以,今天就以此为题展开拓展分析,再输出一点Pandas干货……
我们先来用专业的术语描述一下awk是什么,如果你看不懂,没关系,我们会再用”大白话”解释一遍。
在ONLYOFFICE7.3版本更新以来,每次给大家都分享几种函数公式的运用方式,今天在给大家分享两种,分别是;WRAPROWS、WRAPCOLS。
OpenTSDB(Open time series data base),开发时间序列数据库。DB这个词很有误导性,其实并不是一个db,单独一个OpenTSDB无法存储任何数据,它只是一层数据读写的服务,更准确的说它只是建立在Hbase上的一层数据读写服务。行业内各种db都很多了,为什么还会出现它?它到底有什么好?它做了什么?别着急,我们来一一分析下。 其实OpenTSDB不是一个通用的数据存储服务,看名字就知道,它主要针对于时序数据。什么是时序数据,股票的变化趋势、温度的变化趋势、系统某个指标的变化趋势……其实都是时序数据,就是每个时间点上纪录一条数据。 关于数据的存储,我们最熟悉的就是mysql了,但是想想看,每5分钟存储一个点,一天288个点,一年就10万+,这还是单个维度,往往在实际应用中维度会非常多,比如股票交易所,成千上万支股票,每天所有股票数据就可能超过百万条,如果还得支持历史数据查询,mysql是远远扛不住的,必然要考虑分布式存储,最好的选择就是Hbase了,事实上业内基本上也是这么做的。(我对其他分布式存储不了解,就不对比了)。 了解Hbase的人都知道,它可以通过加机器的水平扩展迅速增加读写能力,非常适合存储海量的数据,但是它并不是关系数据库,无法进行类似mysql那种select、join等操作。 取而代之的只有非常简单的Get和Scan两种数据查询方式。这里不讨论Hbase的相关细节,总之,你可以通过Get获取到hbase里的一行数据,通过Scan来查询其中RowKey在某个范围里的一批数据。如此简单的查询方式虽然让hbase变得简单易用, 但也限制了它的使用场景。针对时序数据,只有get和scan远远满足不了你的需求。 这个时候OpenTSDB就应运而生。 首先它做了数据存储的优化,可以大幅度提升数据查询的效率和减少存储空间的使用。其次它基于hbase做了常用时序数据查询的API,比如数据的聚合、过滤等。另外它也针对数据热度倾斜做了优化。接下来挨个说下它分别是怎么做的。
索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存。如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录。表里面的记录数量越多,这个操作的代价就越高。如果作为搜索条件的列上已经创建了索引,MySQL无需扫描任何记录即可迅速得到目标记录所在的位置。
我曾经在公司处理过很多次Mysql性能上的问题,利用一些Linux常用的命令来查看Mysql对服务器的CUP和I/O使用情况,通过慢查询日志找出有待优化的sql,通过show processlist查看正在执行的sql的情况以及及时kill死锁的sql,通过EXPLAIN分析需要优化的sql语句。当然也对Mysql内部配置做了一些调整。 最近也在看《高性能MySQL》这本Mysql的经典书籍,很早的时候我就想写一个系列来介绍我在使用Mysql遇到的一些问题。无意中发现一篇博客写的内容和我想写的基本差不
2021-01-13:很多列的数据,任意一列组合查询,mysql能做到,但是上亿的数据量做不到了,查的时候非常慢。我们需要一个引擎来支持它。这个引擎你有了解过吗?
数据库,简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。
Rows(“2474:2484”).deleteShift:=xlToLeft
Pandas 基于 NumPy 开发,它提供了快速、灵活、明确的数据结构,旨在简单、直观地处理数据。
正确地创建和使用索引是实现高性能查询的基础,本文笔者介绍MySQL中的前缀索引和多列索引。
pandas的数据选择是十分重要的一个操作,它的操作与数组类似,但是pandas的数据选择与数组不同。当选择标签作为索引,会选择数据尾部,当为整数索引,则不包括尾部。例如列表a[0, 1, 2, 3, 4]中,a[1:3]的值为1,2;而pandas中为1,2,3。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/details/51383163
pandas提供了很多方便简洁的方法,用于对单列、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁。
.Range(“A30”).Resize(1,Ubound(一维数组))= 一维数组
领取专属 10元无门槛券
手把手带您无忧上云