昨天下午,旁边的同事在学习Linux系统中的虚拟地址映射(经典书籍《程序员的自我修养-链接、装载与库》),在看到6.4章节的时候,对于一个可执行的ELF文件中,虚拟地址的值百思不得其解!
保护模式与实模式最本质的区别就是:保护模式使用了全局描述符表,用来保存每一个程序(bootloader,操作系统,应用程序)使用到的每个段信息:开始地址,长度,以及其他一些保护参数。
上一篇我们了解了内存在内核态是如何管理的,本篇文章我们一起来看下内存在用户态的使用情况,如果上一篇文章说是内核驱动工程师经常面对的内存管理问题,那本篇就是应用工程师常面对的问题。
虚拟地址空间(Virtual Address Space)是每一个程序被加载运行起来后,操作系统为进程分配的虚拟内存,它为每个进程提供了一个假象,即每个进程都在独占地使用主存。
前两篇文章,我们一起学习了 8086 处理器中关于 CPU、内存的基本使用方式,重点对段寄存器和内存的寻址方式进行了介绍。
C/C++程序为编译后的二进制文件,运行时载入内存,运行时内存分布由代码段、初始化数据段、未初始化数据段、堆和栈构成,如果程序使用了内存映射文件(比如共享库、共享文件),那么包含映射段。Linux环境程序典型的内存布局如图1-5所示。
在多任务操作系统中,每个进程都运行在属于自己的内存沙盘中。这个沙盘就是虚拟地址空间(Virtual Address Space),在32位模式下它是一个4GB的内存地址块。在Linux系统中, 内核进程和用户进程所占的虚拟内存比例是1:3,而Windows系统为2:2(通过设置Large-Address-Aware Executables标志也可为1:3)。这并不意味着内核使用那么多物理内存,仅表示它可支配这部分地址空间,根据需要将其映射到物理内存。
在上一篇文章中Linux从头学05-系统启动过程中的几个神秘地址,你知道是什么意思吗?,我们以几个重要的内存地址为线索,介绍了 x86 系统在上电开机之后:
饭是一口一口的吃,计算机也是一步一步的发展,例如下面这张英特尔公司的 CPU 型号历史:
Linux下的程序的文件格式是ELF,里面分了各种段,有代码段、数据段、等。当运行这个程序时,系统也会给这个进程创建虚拟内存,然后把ELF中的数据分别加载到内存中的对应位置。本文整理了用cpp程序读取内存中的代码段和rodata数据段的方法。
1. 在进行远程调试之前需要对Linux平台进行一些准备工作。在IDA的安装目录中的dbgsrv文件夹中,选择linux_server或者linux_serverx64复制到需要调试Linux程序所在的目录下。将复制过来的文件赋予执行权限chmod 777 linux_server*。执行该文件./linux_server或者./linux_server64。
Intel 微处理器的段机制是从8086 开始提出的, 那时引入的段机制解决了从CPU 内部 16 位地址到20 位实地址的转换。为了保持这种兼容性,386 仍然使用段机制,但比以前复杂。 因此,Linux 内核的设计并没有全部采用Intel 所提供的段方案,仅仅有限度地使用 了一下分段机制。这不仅简化了Linux 内核的设计,而且为把Linux 移植到其他平台创造了 条件,因为很多RISC 处理器并不支持段机制。但是,对段机制相关知识的了解是进入Linux 内核的必经之路。
当各位读者看到本次文章的标题,你可能会比较熟悉堆、栈的用法,因为在你学完了c语言后,或多或少都会接触到一点数据结构(但是这里要讲的与数据结构里面的堆和栈还是有点差别的,本次分析这个是从内存分配的角度去看,不是从的数据结构特点去看,而且在笔试面试的时候,经常会遇到这种题目,让你说出他们的区别来。自己亲身体会,遇到了好几次)。后面的数据段、代码段、bss段,可能你平时没有怎么细心总结,现在你可能还真讲不出他们的区别来,不信的话,读者在看到这里可以先暂定一下,在自己以往写了那么多的代码,仔细回忆看看他们有啥区别,如果不知道也没关系,读者可以继续随着我笔步往下看,当你看完或许会发出这样的感叹,原来是这样啊。是的,确实是这样的,包括自身在写这篇文章开始之前,我也讲不出来他们的区别(这里是昨天一个网友在我自己建的一个技术交流群里。提出了一个关于数据初始化的问题,如下图,正如你所见这个可能比较简单,但是要理解这里面的知识点,还是要花点时间来总结一下的):
理论上来讲,可以把那些可靠性介于操作系统和应用程序之间的程序安排在这两个特权级上。
在上一篇文章中,我们一起学习了Linux系统中 GCC编译器在编译可执行程序时,静态链接过程中是如何进行符号重定位的。
首先看linux进程在32位处理器下的虚拟空间内存布局,以i386 32位机器为例
内存 是操作系统非常重要的资源,操作系统要运行一个程序,必须先把程序代码段的指令和数据段的变量从硬盘加载到内存中,然后才能被运行。如下图所示:
使用指针时最常见的错误就是没有语法错误的程序运行时直接崩溃,Debug时运行到有问题的一行是,程序崩溃,并在右下角冒出提示SIGSEGV Segmentation fault.(cb环
一个可执行文件被执行的同时也伴随着一个新的进程的创建。Linux会为这个进程创建一个新的虚拟地址空间,然后会读取可执行文件的文件头,建立虚拟地址空间与可执行文件的映射关系,然后将CPU的指令指针寄存器设置成可执行文件的入口地址,然后CPU就会从这里取指令执行。
不论是在 x86 平台上,还是在嵌入式平台上,系统的启动一般都经历了 bootloader 到 操作系统,再到应用程序,这样的三级跳过程。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/50608829
在windows情况下,默认将高地址的2GB空间分配给内核(当然也可以分配1GB),而在Linux情况下,默认将高地址的1GB空间分配给内核,内核空间以外剩下的空间给用户使用也被称为用户空间。
经过多篇文章的介绍,我们实现了从实地址模式跳转到保护模式,并在 IA-32 硬件系统中实现了代码的编写与执行。 进军保护模式 保护模式进阶 — 再回实模式
作为一个Android开发者,了解整个系统架构是必须的,所以这篇就总结一下Android手机从按下开机键到启动这一过程发生了什么。
今天开始分享C语言里面的存储类型、作用域、生命周期、链接属性等知识点,我们写完一个程序,不只说知其,更要知其所以然。
进程(执行的程序)会占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等。不过进程对这些内存的管理方式因内存用途 不一而不尽相同,有些内存是事先静态分配和统一回收的,而有些却是按需要动态分配和回收的。对任何一个普通进程来讲,它都会涉及到5种不同的数据段。 Linux进程的五个段 下面我们来简单归纳一下进程对应的内存空间中所包含的5种不同的数据区都是干什么的。 BSS段:BSS段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域。BSS是英文
现代的应用程序都运行在一个内存空间里,在 32 位系统中,这个内存空间拥有 4GB (2 的 32 次方)的寻址能力。
先来分析一个简单的.lds链接脚本 例1,假如现在有head.c init.c nand.c main.c这4个文件: 1.1 首先创建链接脚本nand.lds: 1 SECTIONS { 2
例1,假如现在有head.c init.c nand.c main.c这4个文件:
在一个夜黑风高的晚上,我的男同事突然给我发了一条微信,我点开来看,他竟然问我Android从按下开机键到启动到底发生了什么?此刻我的内心如下图:
注:本分类下文章大多整理自《深入分析linux内核源代码》一书,另有参考其他一些资料如《linux内核完全剖析》、《linux c 编程一站式学习》等,只是为了更好地理清系统编程和网络编程中的一些概念性问题,并没有深入地阅读分析源码,我也是草草翻过这本书,请有兴趣的朋友自己参考相关资料。此书出版较早,分析的版本为2.4.16,故出现的一些概念可能跟最新版本内核不同。
---- 保护模式 什么实模式和保护模式 这是CPU的两种工作模式,解析指令的方式不同。 在实模式下,16位寄存器需要通过段:偏移的方法才能达到1MB的寻址能力。 物理地址 = 段值 x 16 + 偏移 此时段值还可以看成地址的一部分,段值为XXXXh表示以XXXX0h开始的一段内存。 在保护模式下,CPU有着巨大的寻址能力,并为操作系统提供了虚拟内存和内存保护。 虽然物理地址的仍然用上面的公式表示,但此时“段”的概念发生了变化,它变成了一个索引,指向一个数据结构的一个表项,表项中详细定义了段的
x86 系统中的保护模式,给系统的安全性提供了很大的保障,但是在我们之前的文章中,一直都淡化了特权级别这个概念。
近期研究了一下elf文件格式,发现好多资料写的都比較繁琐,可能会严重打击学习者的热情,我把自己研究的结果和大家分享,希望我的描写叙述可以简洁一些。
从CPU发明到现在,有非常多种架构,从我们熟悉的X86,ARM,到不太熟悉的MIPS,IA64等
一. 异常向量表 1. 异常相关概念 (1) 异常 (2) 异常类型简介 2. 异常处理 (1) 异常处理 二. 异常向量表代码编写 1. 初始化异常向量表模块代码 2. 链接器脚本 3. Makefile 编译脚本 4. 编译输出可执行文件 本博客的参考文章及相关资料下载 : 1.ARM 架构参考手册 ( ARM Architecture Reference Manual ) : https://download.csdn.net/download/han1202012/8324641 2.汇
每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。
mm_struct 结构体 在 Linux 源码 linux-4.12\include\linux\mm_types.h#359 位置 ;
对于精通 CURD 的业务同学,内存管理好像离我们很远,但这个知识点虽然冷门(估计很多人学完根本就没机会用上)但绝对是基础中的基础。
触及到知识的盲区了,于是就去搜了一下copy-on-write写时复制这个技术究竟是怎么样的。发现涉及的东西蛮多的,也挺难读懂的。于是就写下这篇笔记来记录一下我学习copy-on-write的过程。
假设B复制了A,当修改A时,看B是否会发生变化。如果B也跟着变了,说明这是浅拷贝;如果B没变,那就是深拷贝。
我们接着用ps+grep过滤指令查看这个16815进程,发现其就是bash进程
任何程序运行起来都需要分配内存空间存放该进程的资源信息的,C程序也不例外。C程序中的变量、常量、函数、代码等等的信息所存放的区域都有所不同,不同的区域又有不同的特性。C语言学习者、尤其是在学习嵌入式的朋友,这些知识点一定要吃透!
来看下 https://en.wikipedia.org/wiki/Copy-on-write的说明
终于开始介绍分页机制了,作为一名 Linuxer,大名鼎鼎的分页机制必须要彻底搞懂!
那么多对于我们初学者来说要学习哪种风格呢?答案是肯定的,学习GNU风格的汇编代码,因为做Linux驱动开发必须掌握的linux内核、uboot,而这两个软件就是GNU风格的。
数据结构中栈具有后进先出的特点,我们提到堆和栈空间的时候,指的是数据在内存中的概念,对栈空间,基本的认知包括:
领取专属 10元无门槛券
手把手带您无忧上云