同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,我先限定一下本文的上下文。 本文讨论的背景是Linux环境下的network IO。 本文最重要的参考文献是Richard Stevens的“UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking ”,6.2节“I/O Models ”,Stevens在这节中详细说明了各种IO的特点和区别,如果英文够好的话,推荐直接阅读。Stevens的文风是有名的深入浅出,所以不用担心看不懂。本文中的流程图也是截取自参考文献。
" 内核线程 " 是一种 特殊进程 , 独立运行在 " 内核空间 " , 其将 " 内核函数 " 委托给 独立进程 , 该 " 独立进程 " 与 其它进程 ( 包括 普通进程 , 内核自身 , 用户级线程 ) 并行执行 ;
https://elrepo.org/linux/kernel/el7/x86_64/RPMS/
前面我们了解到了0号进程是系统所有进程的先祖, 它的进程描述符init_task是内核静态创建的, 而它在进行初始化的时候, 通过kernel_thread的方式创建了两个内核线程,分别是kernel_init和kthreadd,其中kernel_init进程号为1
我一个SocketServer有500个链接连过来了,我想让500个链接都是并发的,每一个链接都需要操作IO,但是单线程下IO都是串行的,我实现多路的,看起来像是并发的效果,这就是多路复用!
参考 【Linux 内核】编译 Linux 内核 ① ( 下载指定版本的 Linux 内核源码 | Linux 内核版本号含义 | 主版本号 | 次版本号 | 小版本号 | 稳定版本 ) 博客 , 下载 Linux 5.6.18 版本的内核源码 ;
为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。
在windows系统中,“开始-运行-cmd”可以打开“cmd.exe”,进行命令行操作。 操作系统可以分成核心(kernel)和Shell(外壳)两部分,其中,Shell是操作系统与外部的主要接口,位于操作系统的外层,为用户提供与操作系统核心沟通的途径。在windows系统中见到的桌面即explorer.exe(资源管理器)是图形shell,而cmd就是命令行shell。这算是cmd与dos的最大区别,一个只是接口、一个是操作系统。只是cmd中的某些命令和dos中的命令相似,因此很多人把二者混为一谈。cmd属于windows系统的一部分,dos本身就是一个系统,在dos系统下可以删除,修复windows系统,而在cmd下则不行。
在某些情况下,我们需要对于内核中的流程进行分析,虽然通过 BPF 的技术可以对于函数传入的参数和返回结果进行展示,但是在流程的调试上还是不如直接 GDB 单步调试来的直接。本文采用的编译方式如下,在一台 16 核 CentOS 7.7 的机器上进行内核源码相关的编译(主要是考虑编译效率),调试则是基于 VirtualBox 的 Ubuntu 20.04 系统中,采用 Qemu + GDB 进行单步调试,网上查看了很多文章,在最终进行单步跟踪的时候,始终不能够在断点处停止,进行过多次尝试和查询文档,最终发现需要在内核启动参数上添加 nokaslr ,本文是对整个搭建过程的总结。
Linux内核版本有两种:稳定版和开发版 ,Linux内核版本号由3个数字组成:r.x.y
作为较早出现的虚拟化技术,Xen是“第一类”运行在裸机上的虚拟化管理程序(Hypervisor),也是当前相当一部分商业化运作公司的基础技术,其中包括Citrix系统公司的XenServer和Oracle的虚拟机。Xen技术的倡导者们声称Xen的性能强劲,并且拥有一个广泛的管理工具和能够交付卓越性能,以及其它诸多优点。
内核进行的是应用软件和计算机硬件的交互工作在计算机科学中,内核(英语:kernel)又称核心,是一个计算机程序,用来管理软件发出的数据I/O(输入与输出)要求,将这些要求转译为数据处理的指令,交由中央处理器(CPU)及计算机中其他电子组件进行处理,是现代操作系统中最基本的部分。 它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并由内核决定一个程序在什么时候对某部分硬件操作多长时间。直接对硬件操作是非常复杂的。所以内核通常提供一种硬件抽象的方法,来完成这些操作。通过进程间通信机制及系统调用,应用进程可间接控制所需的硬件资源(特别是处理器及IO设备)。
Linux下的大页分为两种类型:标准大页(Huge Pages)和透明大页(Transparent Huge Pages)。
该文介绍了交叉编译工具链的使用,包括arm-linux-gnueabi-gcc、arm-linux-gnueabihf-gcc、arm-none-eabi-gcc、arm-none-linux-gnueabi-gcc、arm-none-linux-gnueabihf-gcc、qoriq-elf-gcc等工具的使用方法。
从基本的看起,一个典型的 Linux 文件系统由 bootfs 和 rootfs 两部分组成,
以内核代码 v0.11 和 v3.4.2 版本源码对 Linux 内核相关知识进行学习,由浅入深逐步掌握 Linux 内核。本文记录 Linux 操作系统结构与功能流程的学习。
Linux kernel在自身初始化完成之后,需要能够找到并运行第一个用户程序(这个程序通常叫做“init”程序)。用户程序存在于文件系统之中,因此,内核必须找到并挂载一个文件系统才可以成功完成系统的引导过程。
目前最新的稳定版本是5.9.14, 但是编译该版本的内核需要高版本的gcc, 生产环境gcc尽量保持与发行版本一致
linux中提供了 /dev/urandom 和 /dev/random 两个特殊设备来提供随机数。那么这两个文件有什么区别呢? 要回答这个问题,先需要了解熵这个概念。
在之前的博客中已经学习了一些相关的操作,这次来分享的是与Linux的权限有关的一些笔记。 在正片开始之前,先来讲讲外壳(shell)。
洪志国,腾讯云工程师,负责 TKE 产品容器运行时,K8s,Mesh 数据面等基础组件研发。 陈鹏,腾讯云工程师,负责腾讯云 TKE 的售中、售后的技术支持,根据客户需求输出合理技术方案与最佳实践,为客户业务保驾护航。 容器的底层实现深度依赖于内核的众多特性,如 overlay 文件系统,namespace,cgroup 等,因此内核的功能和稳定性,在很大程度上,决定了整个容器 PaaS 平台的功能和稳定性。从 TKE 上线三年多以来,上万集群,数十万个节点的运营经验来看,内核问题约占所有节点问题的三分之
关于进程和线程,在 Linux 中是一对儿很核心的概念。但是进程和线程到底有啥联系,又有啥区别,很多人还都没有搞清楚。
由于不同硬件的功能函数不同,因此同一个操作系统不能在不同的平台上运行。 06年以前,apple请IBM开发CPU(Power CPU),然后apple在硬件的基础上开发自己的操作系统MAC。而Windows在x86架构上开发操作系统。因此windows无法安装到mac上。 不过06年以后apple请Intel设计x86架构的cpu,所以现在mac上也能安装windows。 ps:windows是针对x86的cpu设计的,所以只能在x86计算机上安装。而Linux是开源的操作系统,所以她的代码可以
Linux kernel 2.2之前,(如图)读写数据基本都是使用read系统调用和write系调用,以nginx来说如果一个请求建立,从磁盘的文件到网络连接之间会通过硬件(DMA)---内核层---用户层多次读写系统来完成文件数据的复制传输:从内核层用read系统调用读到用户层,再从用户层用write系统调用写到内核层,每一次用户层到内核层的进行一次上下文转换,这种代价是非常昂贵的。甚至在没有数据变化时这种复制尤其显得多余。如果nginx接受大量并发请求,这种系统调用就会非常频繁,服务器的性能就会下降。
LinuxThreads 项目最初将多线程的概念引入了 Linux?,但是 LinuxThreads 并不遵守 POSIX 线程标准。尽管更新的 Native POSIX Thread Library(NPTL)库填补了一些空白,但是这仍然存在一些问题。本文为那些需要将自己的应用程序从 LinuxThreads 移植到 NPTL 上或者只是希望理解有何区别的开发人员介绍这两种 Linux 线程模型之间的区别。
前言: 书接上回《内存映射技术分析》,继续来分析一下linux的物理内存管理。 分析: 1,物理内存 PC上的内存条,或者手机上的内存芯片,物理上实实在在的内存,就是物理内存。大小是硬件决定的,一般就是一个起始地址,加上大小。地址如何分配呢?PC上作者也不太懂,听闻BIOS可以配置。在ARM上,作者曾经看过一份电路图,当时的图上,使用32bit的高2bit作为chip select,后面的30bit作为地址总线,看过chip select信号之后,作者才明白为什么在代码上要配置起始的地址不是0,因为硬件
0x00 前言 CPU版的TensorFlow安装还是十分简单的,也就是几条命令的时,但是GPU版的安装起来就会有不少的坑。在这里总结一下整个安装步骤,以及在安装过程中遇到的问题和解决方法。 整体梳理 安装GPU版的TensorFlow和CPU版稍微有一些区别,这里先做一个简单的梳理,后面有详细的安装过程。 Python NVIDIA Cuda cuDNN TensorFlow 测试 0x01 安装Python 这里有两种安装的方法: 安装基本的Python环境,需要什么再继续安装。 安装Anaconda,
The GNU Compiler Collection,通常简称GCC,是一套由GNU开发的编译器集,为什么是编辑器集而不是编译器呢?那是因为它不仅支持C语言编译,还支持C++, Ada, Objective C等许多语言。另外GCC对硬件平台的支持,可以所无所不在,它不仅支持X86处理器架构, 还支持ARM, Motorola 68000, Motorola 8800, Atmel AVR, MIPS等处理器架构。
kvm 是 linux 的内核的一个 module,而 xen 是一个 linux 的应用。
可以看出buff/cache占用的内存份额很大,有时候程序运行结束后,大量内存仍位于buff/cache中,有时运行程序会导致内存不足,因此需要将这部分内存释放出来。
1、各种文件的意义 vmlinux 编译出来的最原始的内核文件,未压缩。 zImage 是vmlinux经过gzip压缩后的文件。 bzImage bz表示“big zImage”,不是用bzip2压缩的。两者的不同之处在于,zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么采用zImage或bzImage都行,如果比较大应该用bzImage。 uImage U-boot专用的映像文件,它是在zImage之前加上一个长度为0x4
AEP是Intel推出的一种新型的非易失Optane Memory设备,又被称作Apache Pass,所以一般习惯称作AEP。在这之前也有类似的设备称作NVDIMM或PMEM,目前Linux创建的AEP设备节点也是叫做pmem(如/dev/pmem0), 所以本文中NVDIMM或PMEM都指AEP。 但是本文不是为了科普AEP,如果想了解AEP的一些基本知识,可以参考以下几篇文章: NVDIMM Enabling in SUSE Linux Enterprise Part 1 NVDIMM Enabling in SUSE Linux Enterprise Part 2 Persistent Memory Wiki
上一次咱们分析了 Linux 的启动流程和初始化流程,今天主要分析一下内存方面的初始化和常见的内存分配方式。
在计算机系统中,CPU的功能是执行程序,总结起来就是我们在教科书上学到的:取指、译码、执行。那么问题来了,如果没有程序要执行,CPU要怎么办?也许您会说,停掉就是了啊。确实,是要停掉,但何时停、怎么停,却要仔细斟酌,因为实际的软硬件环境是非常复杂的。
假设你已经通过《perf:一个命令发现性能问题》中的方法或者使用profiler分析,已经发现内存分配是性能瓶颈:
Linux当中最核心的部分就是内核,这个也是最基础,最可能被忽视的一部分,随便找一个刚入职的运维,学习个两三天,网上找些资料也能能自己安装编译内核了,很多运维的初期培训就是做的这些学习,为什么在网上已经有这么多文章的情况下,还要写一篇关于内核的文章,这是因为,我想讲的是如何去选择内核 一般来说,找内核的时候都会去下面这个网站进行选择
随着计算需求规模的不断增大,应用程序对内存的需求也越来越大。为了实现虚拟内存管理机制,操作系统对内存实行分页管理。自内存“分页机制”提出之始,内存页面的默认大小便被设置为 4096 字节(4KB),虽然原则上内存页面大小是可配置的,但绝大多数的操作系统实现中仍然采用默认的 4KB 页面。 4KB 大小的页面在“分页机制”提出的时候是合理的,因为当时的内存大小不过几十兆字节,然而当物理内存容量增长到几 G 甚至几十 G 的时候,操作系统仍然以 4KB 大小为页面的基本单位,是否依然合理呢?
上一篇介绍了linux驱动的概念,以及linux下设备驱动的基本分类情况及其各个分类的依据和差异,这一篇我们来描述如何写一个类似hello world的简单测试驱动程序。而这个驱动的唯一功能就是输出hello world。 在编写具体的实例之前,我们先来了解下linux内核下调试程序的一个重要函数printk以及几个重要概念。 printk类似c语言的printf,是内核中输出打印信息的函数。以后驱动调试中的重要性不言而喻,下面先做一个简单介绍。 printk的级别 日志级别一共有8个级别,printk
谷歌在本周一宣布,将从即日起到2022年1月31日,对发现Linux 内核漏洞的安全人员将提供更高额的报酬奖励。
关注:被调用者 B 是否有消息通知(回调函数)机制 把 最终结果 返回给 A。
2022 年,我们很可能会看到 Linux 内核中的实验性 Rust 编程语言支持成为主流。2021.12.6 早上发出了更新的补丁,介绍了在内核中处理 Rust 的初始支持和基础设施。
前言:本篇开始我们要对Linux进行更深入的学习了,让我们来进入新篇章:Linux的权限理解!
Debian 12于2023年6月10日发布. 这可能是最好的Linux发行版本,非常值得你关注与了解.
说到开源大家都会想到黑客和极客,开源的概念最早也是在极客们推出和推崇的。开源的提倡旨在开放源代码使之更方便自由的使用和再创作。随着这一思想的发展,衍生出诸多的开源协议,比如有GPL,BSD,MIT等。关于开源的一些故事推荐杜玉杰的 chat 文章《开源纵横谈:谷歌与开源那些事儿》。豪不夸张的说开源的传播已经在颠覆传统软件的开发模式,推动整个 IT 的进步,围绕着开源的社区文化也在这个新的时代发光发热。
在非图形界面的Ubuntu server20.04的GPU服务器上配置环境,包括Nvidia驱动,cuda,cuDNN的安装,Anaconda的安装和开发环境创建。最好的参考文档是各软件的官方文档。
:wq 强制性写入文件并退出。即使文件没有被修改也强制写入,并更新文件的修改时间。
我们都知道unix世界里、一切皆文件、而文件是什么呢?文件就是一串二进制流而已、不管socket、还是FIFO、管道、终端、对我们来说、一切都是文件、一切都是流、在信息交换的过程中、我们都是对这些流进行数据的收发操作、简称为I/O操作(input and output)、往流中读出数据、系统调用read、写入数据、系统调用write、不过话说回来了、计算机里有这么多的流、我怎么知道要操作哪个流呢?做到这个的就是文件描述符、即通常所说的fd(file descriptor)、一个fd就是一个整数、所以对这个整数的操作、就是对这个文件(流)的操作、我们创建一个socket、通过系统调用会返回一个文件描述符、那么剩下对socket的操作就会转化为对这个描述符的操作、不能不说这又是一种分层和抽象的思想、
User space(用户空间)和 Kernel space(内核空间)。Linux里面这么设计的目的主要是为了安全,即使用户空间崩溃了,内核也不受影响。所以在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必须由用户态模式切换至内核态模式,通过系统调用访问硬件设备。
领取专属 10元无门槛券
手把手带您无忧上云