首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【目标检测】YOLOv5:修改自己的网络结构

YOLOv5s模型架构图如下,此图来源于目标检测 YOLOv5网络v6 0版本总结 修改模型 本文修改的目标是修改18、21这两个卷积块,这里是通过一个卷积核为3,步长为2的卷积核实现下采样,我的目标是修改为两个不同尺寸的卷积核...验证维度 修改尺寸最麻烦的就是维度变化,因此在修改之前,最好对修改的部分单独模拟数据查看shape。....shape) # torch.Size([1, 256, 40, 40]) 注:Conv并非pytorch原生的卷积,yolov5作者对其进行了重构,添加了autopad这个函数,这个可以让人在修改卷积核大小时...嵌入模型 修改模型主要有两个方法,第一种是直接修改配置文件(.yaml),yaml主要是用来控制模型的串行连接,修改完之后意味着后面的标号也需要进行调整,较为麻烦。

2.8K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习第1天:深度学习入门-Keras与典型神经网络结构

    神经网络还有一个激活函数的概念,这个激活函数添加到某个神经网络的层上,将输入经过某种函数变化后再输出,常见的激活函数有sigmoid,relu等,不用着急,这些概念我们在之后的系列文章中都会反复提到 Keras...介绍 本系列教程将主要使用Keras库进行讲解,Keras是一个流行的python深度学习库,在许多人工智能竞赛中使用量都居于领先地位 导入 from keras.models import Sequential...# 导入Sequential 模型 from keras.layers import Dense # 导入Dense层 import numpy as np Sequential是一种存储神经网络的模型...这样做往往可以提高模型训练速度) 前馈神经网络 特点 前一个神经元的输出是后一个神经元的输入,一般结构如下图所示 ​ 常见类型 感知机,全连接神经网络,深度神经网络,卷积神经网络 代码示例 from keras.models...import Sequential from keras.layers import Dense import numpy as np # 生成一些示例数据 X = np.random.random

    22710

    KerasKeras入门指南

    参考资料 keras中文文档(官方) keras中文文档(非官方) 莫烦keras教程代码 莫烦keras视频教程 一些keras的例子 Keras开发者的github keras在imagenet以及...VGG19上的应用 一个不负责任的Keras介绍(上) 一个不负责任的Keras介绍(中) 一个不负责任的Keras介绍(下) 使用keras构建流行的深度学习模型 Keras FAQ: Frequently...Asked Keras Questions GPU并行训练 常见CNN结构的keras实现 Keras框架介绍 在用了一段时间的Keras后感觉真的很爽,所以特意祭出此文与我们公众号的粉丝分享。..., validation_data=(X_valid, y_valid)) model.save_weights('/path/to/save/model.h5') 查看网络结构的命令...查看搭建的网络 保存网络结构图 # 你还可以用plot_model()来讲网络保存为图片 plot_model(my_model, to_file='my_vgg16_model.png') 训练集与测试集图像的处理

    2K20

    经典分类网络结构

    学习目标 目标 知道LeNet-5网络结构 了解经典的分类网络结构 知道一些常见的卷机网络结构的优化 知道NIN中1x1卷积原理以及作用 知道Inception的作用 了解卷积神经网络学习过程内容...应用 无 下面我们主要以一些常见的网络结构去解析,并介绍大部分的网络的特点。...3.3.1 LeNet-5解析 首先我们从一个稍微早一些的卷积网络结构LeNet-5(这里稍微改了下名字),开始的目的是用来识别数字的。从前往后介绍完整的结构组成,并计算相关输入和输出。...3.3.1.1 网络结构 激活层默认不画网络图当中,这个网络结构当时使用的是sigmoid和Tanh函数,还没有出现Relu函数 将卷积、激活、池化视作一层,即使池化没有参数 3.3.1.2 参数形状总结...AlexNet可以说是具有历史意义的一个网络结构

    1.3K20

    VGG网络结构分析

    https://blog.csdn.net/qq_25737169/article/details/79084205 一:VGG详解 本节主要对VGG网络结构做一个详细的解读,并针对它所在Alexnet...首先,附上一张VGG的网络结构图: ? 由上图所知,VGG一共有五段卷积,每段卷积之后紧接着最大池化层,作者一共实验了6种网络结构。...是一个良好的特征提取器,其与训练好的模型也经常被用来做其他事情,比如计算perceptual loss(风格迁移和超分辨率任务中),尽管现在resnet和inception网络等等具有很高的精度和更加简便的网络结构...VGG之所以是一个很好的特征提取器,除了和它的网络结构有关,我认为还和它的训练方式有关系,VGG并不是直接训练完成的,它使用了逐层训练的方法。

    4.8K40

    卷积神经网络的网络结构_典型卷积神经网络结构

    大家好,又见面了,我是你们的朋友全栈君 文章目录 GoogLeNet网络简介 GoogLeNet网络结构 Inception之前的几层结构 Inception结构 Inception3a...Inception4d Inception4e+MaxPool Inception5a Inception5b Inception之后的几层结构 辅助分类模块 辅助分类模块1 辅助分类模块2 整体网络结构...GoogLeNet网络结构 GoogLeNet的完整网络结构如下所示: 下面我们将其逐层拆分讲解并结合代码分析 Inception之前的几层结构 在进入Inception结构之前,GoogLeNet...self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128) # output(1024,7,7) Inception之后的几层结构 辅助分类模块 除了以上主干网络结构以外...self.acc_classify1 = AccClassify(512,num_classes) 辅助分类模块2 self.acc_classify2 = AccClassify(528,num_classes) 整体网络结构

    51440

    使用Keras进行深度学习:(一)Keras 入门

    导语 Keras是Python中以CNTK、Tensorflow或者Theano为计算后台的一个深度学习建模环境。...相对于其他深度学习的框架,如Tensorflow、Theano、Caffe等,Keras在实际应用中有一些显著的优点,其中最主要的优点就是Keras已经高度模块化了,支持现有的常见模型(CNN、RNN等...从以上两类模型的简单搭建,都可以发现Keras在搭建模型比起Tensorflow等简单太多了,如Tensorflow需要定义每一层的权重矩阵,输入用占位符等,这些在Keras中都不需要,我们只要在第一层定义输入维度...,其他层定义输出维度就可以搭建起模型,通俗易懂,方便高效,这是Keras的一个显著的优势。...图 5:优化和训练实现 最后用以下图片总结keras的模块,下一篇文章我们将会使用keras来进行项目实践,从而更好的体会Keras的魅力。 ?

    1.1K60
    领券