首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    动态 | 百度发布NLP模型ERNIE,基于知识增强,在多个中文NLP任务中表现超越BERT

    AI 科技评论消息,Google 近期提出的 BERT 模型,通过预测屏蔽的词,利用 Transformer 的多层 self-attention 双向建模能力,取得了很好的效果。但是,BERT 模型的建模对象主要聚焦在原始语言信号上,较少利用语义知识单元建模。这个问题在中文方面尤为明显,例如,BERT 在处理中文语言时,通过预测汉字进行建模,模型很难学出更大语义单元的完整语义表示。例如,对于乒 [mask] 球,清明上 [mask] 图,[mask] 颜六色这些词,BERT 模型通过字的搭配,很容易推测出掩码的字信息,但没有显式地对语义概念单元 (如乒乓球、清明上河图) 以及其对应的语义关系进行建模。

    02

    NLP入门:CNN,RNN应用文本分类,个性化搜索,苹果和乔布斯关系抽取(2)

    前篇 一文了解自然语言处理的每个范畴用到的核心技术,难点和热点(1), 这部分涉及的NLP范畴包括: 中文分词 词性标注 句法分析 文本分类背景 下面介绍,文本分类常用的模型,信息检索,信息抽取。 8文本分类模型 近年来,文本分类模型研究层出不穷,特别是随着深度学习的发展,深度神经网络模型也在文本分类任务上取得了巨大进展。文本分类模型划分为以下三类: 基于规则的分类模型 基于规则的分类模型旨在建立一个规则集合来对数据类别进行判断。这些规则可以从训练样本里自动产生,也可以人工定义。给定一个测试样例,我们可以

    06
    领券