highlights TypeScript 3.9 Beta 发布(英) 提升编译速度5%~10%,改进编辑体验 https://devblogs.microsoft.com/typescript/a
摘要: 如今同质化的应用越来越多,应用开发者也开始在用户体验上下功夫,比如数据可视化,将一大堆密密麻麻的数字转成图表形式,可以更直观地向用户展示数据之间的联系和变化情况,减少用户的阅读和思考时间,以便很好地做出决策;目前互联网中有很多数据可视化工具,这里只选择了30个有特色好用的推荐给大家 如今同质化的应用越来越多,应用开发者也开始在用户体验上下功夫,比如数据可视化,将一大堆密密麻麻的数字转成图表形式,可以更直观地向用户展示数据之间的联系和变化情况,减少用户的阅读和思考时间,以便很好地做出决策;目前互联网中
在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的发展,从传统只能依靠于flash、IE的vml,各个浏览器尚不统一的svg,到如今规范统一的canvas、svg为代表的html5技术,表现点、线、面要素的技术已经越来越规范成熟。我把前端数据可视化分为了五种: 1.图表 2.图谱 3.地图 4.关系图 5.立体图 我将按照顺序介绍62款前端可视化插件,下面就分享下其中34款图表插件: 1.amcharts url
工欲善其事,必先利其器。好的工具可以大大提升你的工作效率,并获得身边人的羡慕和赞赏。今天,我们就来向小伙伴们分享一大波非常实用的工具,武装你的大脑。 ▲图表类 iCharts 简介:各种主题的开放图
上面的两个动图,就是条形竞赛图和折线竞赛图,今天我们就来看看都有哪些方便的方法来制作呢
摘要 Highcharts图表控件是目前使用最为广泛的图表控件。本文将从零开始逐步为你介绍Highcharts图表控件。通过本文,你将学会如何配置Highcharts以及动态生成Highchart图表。 ---- 目录 前言(Preface) 安装(Installation) 如何设置参数(How to set up the options) 预处理参数(Preprocess the options) 活动图(Live charts) ---- 一、前言(Preface) Highcharts是一个非常
在这篇文章中,我向大家介绍前5名最好的开源JavaScript图表库。每个站点的仪表板都是不完整的,因为他们缺少图表,所以为我们的站点找到正确的图表库是非常重要的。以下库可以帮助你在站点创建可自定义和美观的图表。 D3.js - 数据驱动的文档 D3.js是一个开源的JavaScript库,用于根据用户数据处理文档。这是一个强大的工具,通过HTML,SVG和CSS的帮助,赋予数据生命。 D3允许开发人员将任意数据绑定到DOM,然后将数据驱动的转换应用到DOM。例如:考虑一个数组数组,您可以使用它来生成一
最近笔者终于把H5-Dooring的后台管理系统初步搭建完成, 有了初步的数据采集和数据分析能力, 接下来我们就复盘一下其中涉及的几个知识点,并一一阐述其在Dooring H5可视化编辑器中的解决方案. 笔者将分成3篇文章来复盘, 主要解决场景如下:
有小伙伴说,使用 matplotlib 做出来的图表比不上其他的基于 js 包装的库(pyechart、bokeh、plotly等)漂亮,他们可以还可以交互。同时,基于 matplotlib 包装的 seaborn 似乎也比较省代码。
sChart.js 作为一个小型简单的图表库,没有过多的图表类型,只包含了柱状图、折线图、饼状图和环形图四种基本的图表。麻雀虽小,五脏俱全。sChart.js 基本可以满足这四种图表的需求。而它的小,体现在它的体积上,代码只有 8kb,如果经过服务器的Gzip压缩,那就更小了,因此不用担心造成项目代码冗余。
本文介绍了一个小型简单的图表库\n - sChart.js,适用于各种图表类型,如柱状图、折线图、饼状图和环形图\n - 大小仅8KB,通过canvas实现,兼容IE9以上浏览器\n - 提供简单易用的 API,方便开发者快速生成图表\n
大家注意:因为微信最近又改了推送机制,经常有小伙伴说错过了之前被删的文章,或者一些限时福利,错过了就是错过了。所以建议大家加个星标,就能第一时间收到推送。
Apache ECharts 5.5.0 版本已于 2024.2.18 正式发布。
自 2014 年国外著名研究机构 Forrester 正式提出「低代码」概念以来,便开始受到技术圈的广泛关注。
Markmap 是一个非常有用的工具,它可以将 Markdown 文本转换成交互式的思维导图,我在工作中经常会用到这个工具,比如:
众多周知,图形和图表要比文本更具表现力和说服力。图表是数据图形化的表示,通过形象的图表来展示数据,比如条形图,折线图,饼图等等。可视化图表可以帮助开发者更容易理解复杂的数据,提高生产的效率和 Web 应用和项目的可靠性。
利用R语言也可以制作出漂亮的交互数据可视化,下面和大家分享一些常用的交互可视化的R包。
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
RAWGraphs是一个在线的开源工具和数据可视化框架,用来处理Excel表中的数据。你只需将数据导入到RAWGraphs中,设计你想要的图表,然后将其导出为SVG格式或PNG格式的图片。此外,上传至RAWGraphs的数据只会在web端在线进行处理,保证了数据的安全性。
Ajax MGraph 基于 Prototype.js 的 Ajax 图表库,纯 XHTML 和 CSS 实现。
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
ECharts 是一个使用 JavaScript 实现的开源可视化库,涵盖各行业图表,满足各种需求。
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
本周工作中遇到类似颜色主题的问题,在查资料的时候,看到这个视频,觉得讲得很清楚,而且趣味性丰富,所以想拿出来讲讲这个很有意思的主题。
什么是数据可视化?数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集
几个月前开源的H5页面制作平台H5-Dooring 收到了很多热心的反馈和交流, 顺着笔者之前的规划, 我们又做了一款可视化大屏编辑器V6.Dooring. 接下来笔者就来带大家一起看看我们的方案设计和技术实现.
图表即代码是将图表以领域特定语言作为载体,围绕于不同的使用场景,转译生成二次产物 —— 如概念图、架构图、软件架构等。 对于造图形库这个库,我的想法由来已久。然而,直到最近,积压的需求越来越多的时候: 随着,我们在 ArchGuard 中的架构工作台的进一步深入,需要构建一个架构设计线上化的功能。对于 ArchGuard 平台而言,设计线上化并意味着在线设计架构。在初期,我们想提供的是:架构图的线上化呈现,也就是可以通过代码化架构图的方式,诸如于 Mermaid 就可以提供这样的功能。 与此同时,在半年前,
这个题目有点小,本篇博客真正谈论的应该是服务端生成图表的简单方案,这里面有两个关键字:服务端 & 简单,我们知道基于js有很多的图表库,知名的如D3、echarts 、highcharts等等,对于做数据可视化方向的同学可能自己都做过此类chart的研发,无论从零构建还是使用已有的轮子,基本上都是基于js在做,因为大部分数据可视化产品都是to B的产品。
在VSCode里,对常见的关键字和可推断的对象确实是可以有智能提示,但一旦使用其他第三方库,这个智能提示就不管用了,而对于面向轮子来开发的应用层开发来说,就很痛苦。
距离上一篇文章过去了二十多天了,期间一直想把第二部分写完,结果在测试过程中遇到了各种坑爹的问题,到今天才算基本完成,也许还有后续,但趁着今天有时间就写出来吧,也算对这个项目的一个总结了 遇到最大问题: 项目的需求是在一个窗口里生成所有图表,还要考虑到整套打印,所以滚动加载和分页浏览不是最好的方案,这导致数据超级多的时候(大概会生成2000多页的报告且上不封顶),会造成页面假死,疯狂占用电脑内存,低配置的电脑根本无法加载,甚至造成死机 在项目结构上我们采用数据分发的方式控制组件的渲染,由大致小每层组件都对数据
❖ Excel:Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据
echarts是一款不错的商业级数据图表,目前已更新到echarts3版本,但是由于历史原因,echarts2仍然有比较大的使用占比,之所以讲echarts2的引入方式是因为项目在混合使用echarts2与echarts3的时候遇到了一个问题,这个与我之前写过的一篇文章有关:http://blog.csdn.net/john1337/article/details/54947787,下面入主题。
【导语】如何将我们的数据以更好的形势呈现出来?擅长不同编程语言的程序员会选择各自技术范畴内成熟、好用的工具包,比如 R 语言的开发者最常使用的是 ggplot2,但它不支持 Python;以前 Python 语言的开发者使用最多的是 matplotlib,一个很强大的可视化库,不过它的局限也非常严重,制作交互式图表也是一件难事。今天要给大家推荐一个新的工具——Altair,一个 Vega-Lite 的包装器,也许这些概念你都还不没了解过,接下来我们就在下面的文章为大家作介绍。
前言 数据可视化,是指将相对晦涩的的数据通过可视的、交互的方式进行展示,从而形象、直观地表达数据蕴含的信息和规律。 早期的数据可视化作为咨询机构、金融企业的专业工具,其应用领域较为单一,应用形态较为保守。步入大数据时代,各行各业对数据的重视程度与日俱增,随之而来的是对数据进行一站式整合、挖掘、分析、可视化的需求日益迫切,数据可视化呈现出愈加旺盛的生命力,表现之一就是视觉元素越来越多样,从朴素的柱状图/饼状图/折线图,扩展到地图、气泡图、树图、仪表盘等各式图形。表现之二是可用的开发工具越来越丰富,从专业的
各个互联网公司通过大量的用户数据、信息进行统计分析,而这些大量繁杂的数据在经过可视化工具处理后,就能以图形化的形式展现在用户面前,清晰直观。随着各种数据的增加,这种可视化工具越来越得到开发者们的欢迎。 下面推荐30款可视化工具供大家选择和使用。 1.iCharts iCharts 提供了一个用于创建并呈现引人注目图表的托管解决方案。有许多不同种类的图表可供选择,每种类型都完全可定制,以适合网站的主题。iCharts 有交互元素,可以从Google Doc、Excel 表单和其他来源中获取
博客使用Word发博,发布后,排版会出现很多问题,一一修正工作量极大,敬请谅解。可加群获取原始文档。
在现代前端开发中,图表和可视化数据呈现的重要性日益增长,ECharts 作为一款强大的数据可视化库广受欢迎。然而,如何将 ECharts 图表中的动态效果保存为一张 GIF 动图,并应用于 Vue2、Vue3、React 等热门框架中,是许多开发者面临的问题。本文旨在为大家详细介绍如何在各大前端框架中实现该功能,提供相关代码案例、QA 指引,以及最佳实践。
一、Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。 二、Google Chart API Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。 三、D3 D3(Data Driven Documents)是支持SVG渲染的另一种Jav
大数据时代,需要工具实现数据可视化,需要倚仗大数据可视化工具,这些工具中不乏有适用于Flash、HTML5、NET、Java、Flex等平台的,也不乏有适用于常规图表报表、金融图表、工控图表、甘特图、流程图、数据透视表、OLAP多维分析等图表报表开发的。
文章首发:《如何在 Vue 中加入图表 - Vue echarts 使用教程 - 卡拉云》
俗话说“巧妇难为无米之炊”。数据时代,没有一款好的数据可视化分析工具,光有团队怎么行? 商场如战场,数据是把枪。亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界……不知不觉,数据已经成为我们生活中必不可少的利器。本文收集了各个平台各种行业的数据可视化分析工具,让你不仅大饱眼福,而且还可以让你事半功倍。 Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也
小程序组件化开发框架 https://tencent.github.io/wepy/
领取专属 10元无门槛券
手把手带您无忧上云