摘要 如何成为一名优秀的切图工程师?百度资深研发工程师潘征与大家分享自己的工作心得。 ROLE移动端酷炫运营页 2014年开始,我在我们部门负责移动端酷炫运营页面,也就是俗称的H5的研发工作。 这些酷
在分布式系统中,随着业务量的增长,如何保护核心资源、防止系统过载、保证系统的稳定性成为了一个重要的问题。限流算法作为一种有效的流量控制手段,被广泛应用于各类系统中。本文将详细介绍四种常见的限流算法、两种常用的限流器工具,从原理、源码的角度进行分析。
最近,我们的业务系统引入了Guava的RateLimiter限流组件,它是基于令牌桶算法实现的,而令牌桶是非常经典的限流算法。本文将跟大家一起学习几种经典的限流算法。
限流的技术现在用的比较普遍了,网上一搜应该有大把的文章,为什么还来凑这个热闹呢,因为最近我们公司也在做限流,限流参考是以并发请求数作为限流参考的,即来一个请求计数器加1,请求结束对应计数器减1,如果计数器超过限流值则拒绝请求。
如果有大量的数据,在同一时间内直接写入数据库,势必对系统造成很大的压力。如果通过特定的方式采用限流的方式以很定的速率来写入数据库,那数据库压力就会小很多。
原文链接:www.toutiao.com/i6692665902485209612
分布式后台服务在面临高并发挑战时,为了保障服务的高可用,业界已经有较为成熟的经验和方法,往往需要采取如下几种措施:
速率限制可以保护和提高基于 API 的服务的可用性。如果你正在与一个 API 对话,并收到 HTTP 429 Too Many Requests 的响应状态码,说明你已经被速率限制了。这意味着你超出了给定时间内允许的请求数量。你需要做的就是放慢脚步,稍等片刻,然后再试一次。
本文仅针对限流做一些简单的说明,那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了。通过限流,我们可以很好地控制系统的qps,从而达到保护系统的目的。本篇文章将会介绍一下常用的限流算法以及他们各自的特点。
曾经在一个大神的博客里看到这样一句话:在开发高并发系统时,有三把利器用来保护系统:缓存、降级和限流。那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了。通过限流,我们可以很好地控制系统的qps,从而达到保护系统的目的。本篇文章将会介绍一下常用的限流算法以及他们各自的特点。
在实际项目中,曾经遭遇过线上5W+QPS的峰值,也在压测状态下经历过10W+QPS的大流量请求,本篇博客的话题主要就是自己对高并发流量控制的一点思考。
1、计数器算法 计数器算法是限流算法里最简单也是最容易实现的一种算法。比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个。那么我们可以这么做:在一开 始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个 请求的间隔时间还在1分钟之内,那么说明请求数过多;如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置 counter,具体算法的示意图如下:
将时间划分为多个窗口,窗口内出现一次请求就将计数器加一,如果计数器超过了限制数量,则本窗口内后续请求都被丢弃当,时间到达下一个窗口时,计数器重置。
限速器 (Rate Limiter) 相信大家都不会陌生,在网络系统中,限速器可以控制客户端发送流量的速度,比如 TCP, QUIC 等协议。而在 HTTP 的世界中, 限速器可以限制客户端在一段时间内发送请求的次数,如果超过设定的阈值,多余的请求就会被丢弃。
什么是限流呢?限流是限制到达系统的并发请求数量,保证系统能够正常响应部分用户请求,而对于超过限制的流量,则通过拒绝服务的方式保证整体系统的可用性。
高并发场景下,爆炸性大量的对数据库的请求操作不仅会占用十分高比例的网络带宽,导致其他应用对数据库的请求受阻,还会导致从库与主库的延迟大大增加,降低了从库数据的不准确率,也降低了缓存的命中率。 如下图:
上一篇文章 go-zero 是如何做路由管理的? 介绍了路由管理,这篇文章来说说限流,主要介绍计数器限流算法,具体的代码实现,我们还是来分析微服务框架 go-zero 的源码。
计数器法是限流算法里最简单也是最容易实现的一种算法。比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个。那么我们可以这么做:在一开始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个请求的间隔时间还在1分钟之内,那么说明请求数过多;如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置counter,具体算法的示意图如下:
大流量,我们很可能会冒出:TPS(每秒事务量),QPS(每秒请求量),1W+,5W+,10W+,100W+...。其实并没有一个绝对的数字,如果这个量造成了系统的压力,影响了系统的性能,那么这个量就可以称之为大流量了。
高并发场景下,服务器可能会因为爆炸性的流量冲击导致拒绝服务,甚至整个服务集群都会因为出现雪崩效益而大面积宕机。那么,如何在高并发场景下依然能提供稳定且高效的服务?
GetX所能提供的功能包括:状态管理、路由管理、依赖管理,提供如国际化、主题等等更多实用工具,今天我们来看下GetX 之状态管理。
限流是指在系统面临高并发、大流量请求的情况下,限制新的流量对系统的访问,从而保证系统服务的安全性。常用的限流算法有计数器固定窗口算法、滑动窗口算法、漏斗算法和令牌桶算法,下面将对这几种算法进行分别介绍,并给出具体的实现。本文略长,读者可以全文阅读,同样也可以只看感兴趣的部分。
在日益增长的网络应用中,请求过多的情况是导致服务器崩溃或应用程序宕机的主要原因之一。流量控制技术是这种情况下的一种重要手段,其中限流算法是最常用的一种技术。限流算法不仅可以有效控制网络流量,还可以保障应用程序的可用性和稳定性。在本篇文章中,我们将探讨限流算法的相关概念、为什么我们需要限流以及可以选择哪些限流算法来帮助我们处理高并发的流量。
滑动窗口的意思是说把固定时间片,进行划分,并且随着时间的流逝,进行移动,这样就巧妙的避开了计数器的临界点问题。也就是说这些固定数量的可以移动的格子,将会进行计数判断阀值,因此格子的数量影响着滑动窗口算法的精度。
在上一篇文章聊聊服务注册与发现中,我们讲了微服务架构中核心功能之一服务注册与发现。在本文中,我们将着重讲下微服务的另外一个核心功能点:流量控制。
计数器法是限流算法里最简单也是最容易实现的一种算法。比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个。那么我们可以这么做:在一开 始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个 请求的间隔时间还在1分钟之内,那么说明请求数过多;如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置 counter,具体算法的示意图如下:
限流是保护高并发系统的三把利器(限流、缓存、降级)之一。限流在很多场景中用来限制并发和请求量,保护自身系统和下游系统不被巨型流量冲垮。比如秒杀业务或者一些访问量很高的基础性服务都会用到限流的技术。
给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 "" 。
在一个高并发系统中对流量的把控是非常重要的,当巨大的流量直接请求到我们的服务器上没多久就可能造成接口不可用,不处理的话甚至会造成整个应用不可用。
开源展示了人类共同协作,成果分享的魅力,每一次技术发展都是站在巨人的肩膀上,技术诸多创新和发展往往就是基于开源发展起来的,没有任何一家网络公司可以不使用开源技术,仅靠自身技术而发展起来。
高并发系统有三大特征:限流、缓存和熔断,所以限流已经成为当下系统开发中必备的功能了。那么,什么是限流?如何实现限流?使用 Redis 能不能实现限流?接下来我们一起来看。
weapp-redux 下载 weapp-redux 使用实例下载 预览 weapp-redux 使用 1. 引入 weapp-redux 插件 克隆 weapp-redux-demo 代码库 git clone https://gitee.com/Rattenking/weapp-redux-demo.git 将项目文件夹下的 weapp-redux 拷贝到自己项目 2. 创建全局的 store 在 weapp-redux 同级创建 store 文件夹 在 store 文件夹下分别创建 actions
针对虚拟机中CPU硬件性能事件与软件代码匹配不够准确的问题,腾讯云技术团队经过深入研究和硬件探索,自主设计了Guest PEBS(精确事件采样技术) 特性在KVM上的虚拟化方案。这项技术的独到之处在于,让虚拟机上CPU运行数据从此由“黑盒”变成了“白盒”,云上开发者从此能够随时随地洞察CPU的运行状态和数据。
作者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
限流顾名思义,提前对各个类型的请求设置最高的QPS阈值,若高于设置的阈值则对该请求直接返回,不再调用后续资源。限流需要结合压力测等,了解系统的最高水位,也是在实际开发中应用最多的一种稳定性保障手段。
限流是限制系统的输入和输出流量,以达到保护系统的目的,而限流的实现主要是依靠限流算法,限流算法主要有4种:
今天来说说限流的相关内容,包括常见的限流算法、单机限流场景、分布式限流场景以及一些常见限流组件。
假设单位时间是一秒,限流阈值为3。在单位时间1秒内,每来一个请求,计数器就加1,如果计数器累加的次数超过限流阈值3,则后续的请求全部拒绝。等到1s结束后,计数器清零,重新开始计数。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
除了客户端和服务器端的实现,还有另一种方式。我们不是在 API 服务器上设置速率限制器,而是创建一个速率限制器中间件,对你的 API 的请求进行限流。
保护高并发系统的三大利器:缓存、降级和限流。那什么是限流呢?用我没读过太多书的话来讲,限流就是限制流量。我们都知道服务器的处理能力是有上限的,如果超过了上限继续放任请求进来的话,可能会发生不可控的后果。而通过限流,在请求数量超出阈值的时候就排队等待甚至拒绝服务,就可以使系统在扛不住过高并发的情况下做到有损服务而不是不服务。
计数器:控制单位时间内的请求数量。缺陷:设每分钟请求数量为60个,每秒可以处理1个请求,用户在 00:59 发送 60 个请求,在 01:00 发送 60 个请求 此时2秒钟有120个请求(每秒60个请求),远远大于了每秒钟处理数量的阈值。 滑动窗口:滑动窗口是对计数器方式的改进, 增加一个时间粒度的度量单位。把一分钟分成若干等分(6份,每份10秒), 在每一份上设置独立计数器,在 00:00-00:09 之间发生请求计数器累加1.当等分数量越大限流统计就越详细。 Leaky Bucket漏桶:规定固定容量的桶, 有水进入, 有水流出. 对于流进的水我们无法估计进来的数量、速度, 对于流出的水我们可以控制速度. Token Bucket令牌桶:规定固定容量的桶, token 以固定速度往桶内填充, 当桶满时 token 不会被继续放入, 每过来一个请求把 token 从桶中移除, 如果桶中没有 token 不能请求。
大家都知道,对于高并发的业务场景,我们为了保障服务的稳定,经常会祭出三大利器:缓存、熔断降级和服务限流。
导语 微服务产品团队为了广大开发者朋友们可以更好的使用腾讯云微服务产品,将持续为大家提供微服务上云快速入门的指引性文档,内容通俗易懂易上手,本篇为本系列的第二篇,为开发者朋友们详解高并发场景下限流的解决方案,欢迎大家收看。 作者简介 刘远 腾讯云泛互联网首席解决方案架构师 本篇文章将从以下四个方面为大家详解高并发场景限流解决方案: 秒杀场景架构概述 限流实现原理及方案选型 限流配置实践 云书城沙盒环境演示 秒杀场景架构概述 场景特点 在电商行业里,商家经常会做商品促销的活动,来进行品牌推广或
在开发高并发系统时,有很多手段来保护系统,如缓存、降级、限流等。缓存可以提升系统的访问速度,降级可以暂时屏蔽掉非核心业务,使得核心业务不受影响。限流的目的是通过对并发访问进行限速,一旦达到一定的速率就可以拒绝服务(定向到错误页或告知资源没有了)、排队等待(如秒杀、评论、下单等)、降级(直接返回兜底数据,如商品库存默认有货)。
在日常生活中,我们经常能看到一些限流场景,比如旅游景点限流、餐厅排队等号、交通限流等,目的就是为了确保可以正常运转。
领取专属 10元无门槛券
手把手带您无忧上云