队列比较常用的是广度优先遍历,在树中是层序遍历,在图中是无权图的最短路径; 栈能帮助你实现深度优先遍历等;
多柱汉诺塔最优算法设计探究 引言 汉诺塔算法一直是算法设计科目的最具代表性的研究问题,本文关注于如何设计多柱汉诺塔最优算法的探究。最简单的汉诺塔是三个柱子(A、B、C),因此多柱汉诺塔的柱子个数M≥3。下面从三柱汉诺塔说起,慢慢深入我们要关心的问题。 1. 三柱汉诺塔 三柱汉诺塔是经典的汉诺塔问题,在算法设计中是递归算法的典型问题。其算法是这样的: 首先把A 柱上面的n- 1 个碟子通过C 柱移到B 柱上【T(n-1)步】,然后把A 柱剩下的一个碟子移到C 柱上【1步】, 最后把B 柱上所有的碟子通过A 柱
汉诺塔传说:汉诺塔问题,是源于印度一个古老的益智玩具;大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
借助一个中转柱,使起始柱中按照规则排放的盘子移动到终点柱,且一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615
汉诺塔问题是一个经典的问题。汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。问应该如何操作移动圆盘的次数最少?
2021-07-27:给定一个数组arr,长度为N,arr中的值只有1,2,3三种。arri == 1,代表汉诺塔问题中,从上往下第i个圆盘目前在左;arri == 2,代表汉诺塔问题中,从上往下第i个圆盘目前在中;arri == 3,代表汉诺塔问题中,从上往下第i个圆盘目前在右。那么arr整体就代表汉诺塔游戏过程中的一个状况。如果这个状况不是汉诺塔最优解运动过程中的状况,返回-1。如果这个状况是汉诺塔最优解运动过程中的状况,返回它是第几个状况。
2021-07-27:给定一个数组arr,长度为N,arr中的值只有1,2,3三种。arr[i] == 1,代表汉诺塔问题中,从上往下第i个圆盘目前在左;arr[i] == 2,代表汉诺塔问题中,从上往下第i个圆盘目前在中;arr[i] == 3,代表汉诺塔问题中,从上往下第i个圆盘目前在右。那么arr整体就代表汉诺塔游戏过程中的一个状况。如果这个状况不是汉诺塔最优解运动过程中的状况,返回-1。如果这个状况是汉诺塔最优解运动过程中的状况,返回它是第几个状况。
汉诺塔问题是一个经典的递归问题,起源于一个传说中的印度寺庙。在这个问题中,我们需要将所有的圆盘从一个柱子移动到另一个柱子上,且在移动过程中,必须遵守以下规则:
分治思想就是把复杂问题、拆分成诺干个相同的小问题,然后将问题逐步解决掉,合并到一起的过程,就是分治思想。简单来说,分治思想就是“分而治之”,将复杂问题拆分成诺干个相同的小问题进行解决。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
放一张我自己画的图,里面记录了函数执行的每一步的过程。重点在注意形参和实参的传递问题。
分治算法,其实就是把一个大问题看成若干个小问题,解决了所有的小问题,那么大问题就解决了,原问题的解就是子问题解的合并,之前说的归并排序、快速排序,都用到了分治思想。
规则不是说每次只能移动一个汉诺塔么,假如n>2,那么第一步跟第三步都涉及到移动多个汉诺塔,这还怎么移?
上一篇文章我们一起实现了栈,那么这一篇文章我们一起来用栈解决问题。看看如何用栈来解决进制转换,平衡圆括号以及汉诺塔问题,使我们对栈有更为深入的理解。
问题源于印度的一个古老传说,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
学递归,跳不过汉诺塔这个程序。以前弄NOIP,老师很详细地讲过汉诺塔的原理以及实现算法,不过我上大学了却发现老师讲到汉诺塔,只是像一笔带过,原理都没讲通,更别说算法了。我相信像他那么讲,没一个同学(没基础的)能弄得懂,就算你给一个flash汉诺塔的游戏,也不见得会玩。
法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。
上一篇文章我们一起实现了栈,那么这一篇文章我们一起来用栈解决问题。看看如何用栈来解决进制转换,平衡圆括号以及汉诺塔问题,使我们对栈有更为深入的理解。 1、进制转换 我们先来看看十进制如何转换成二进制,十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。简单来说就是拿十进制数去除以二,如果
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
但是实际上汉诺塔问题解决方案都是最优解,我们不走弯路,我们的目的性非常强,我们最终目的都是移动到c,所以我们可以先让顶端的木块直接到c
汉诺塔属于比较经典的问题,详见以前的文章Python模拟汉诺塔问题移动盘子的过程,基于非递归算法的汉诺塔游戏之Python实现。 本文代码功能:模拟移动汉诺塔上的盘子,并实时显示3根柱子上盘子的情况。
一座汉诺塔,塔内有3个座A、B、C,A座上有n个盘子,盘子大小不等,大的在下,小的在上,如图所示。把这n个盘子从A座移到C座,但每次只能移动一个盘子,并且自移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在移动过程中可以利用B座来放盘子。
我把3个盘子的汉诺塔全部通过代码演示,按缩进原则,每一个缩进即进一个递归函数,每打印一次即中止当前递归,也就是每个print
1. 汉诺塔问题起源 汉诺塔问题源自印度一个古老的传说,印度教的“创造之神”梵天创造世界时做了 3 根金刚石柱,其中的一根柱子上按照从小到大的顺序摞着 64 个黄金圆盘。梵天命令一个叫婆罗门的门徒将所有的圆盘移动到另一个柱子上,移动过程中必须遵守以下规则: 每次只能移动柱子最顶端的一个圆盘; 每个柱子上,小圆盘永远要位于大圆盘之上; 2. 规律分析 为了方便讲解,我们将 3 个柱子分别命名为起始柱、目标柱和辅助柱。实际上,解决汉诺塔问题是有规律可循的: 当起始柱上只有 1 个圆盘时,我们可以很
补充:汉诺塔问题挺经典的,以前我也一知半解,后来随着更深层次的学习,对递归的理解也要比之前更深,慢慢的就有了自己的理解,理解的重点就是在于递归参数的变换,其实就是原始杆和目标杆的寻找,原始杆就是带有盘子的杆子,目标杆就是我们打算往上挪动盘子的杆子
首先,我们来看看什么是汉诺塔吧~记得初知汉诺塔,就是在今年的暑假游览科技馆的时候,里面就有汉诺塔的游戏,当然耐心烦躁的我并没有解决,没想到今日学习c语言还能看见它(捂脸)。
这道题的地址,想尝试的小伙伴可以来试哦: https://www.dotcpp.com/oj/problem.php?id=1109 这是大家熟悉的汉诺塔问题,每次只能移动一次,问最少的移动次数。 思
汉诺塔II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3675 Accepted Submission(s): 1830 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按
汉诺塔,又称河内塔。是一个源于印度古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上按照大小顺序摞着64片黄金圆盘,大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。 接下来我们就分析一下汉诺塔问题的具体思路!
Author:Gorit Date:2021/8/25 2021年发表博文:21/30
之前老师在课堂上展示了用C实现汉诺塔的可视化移动过程,觉得挺好玩的,下面就让你看看Python是如何实现的,放图。
分治算法是一种很重要的算法。字面上的解释是“分而之治”,就是把一个复杂的问题分成两个或更多的相同问题或相似的子问题,再把子问题分成更小的子问题...知道最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多搞笑算法的基础,如排序算法(快速排序,并归排序),傅立叶变换(快速傅立叶变换)...
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘(如下图)。
这里就是在fac()函数内部 不断调用 fac函数 ;通过简单的代码来实现复杂过程。
本篇继续收集一些常见的python笔试题,以基础知识为主,递归是面试最喜欢考的一个问题,不管是做开发还是测试,都无法避免考递归。本篇结合实际案例,讲下几种关于递归的场景。
汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
本文实例为大家分享了python求解汉诺塔游戏的具体代码,供大家参考,具体内容如下
版权声明:博客文章都是作者辛苦整理的,转载请注明出处,谢谢! https://blog.csdn.net/Quincuntial/article/details/78924517
理解递归,汉诺塔(Tower of Hanoi)是个很适合的工具,不大不小,作为最开始递归的理解正合适。从而学习各种计算机语言乃至各种编程范式的时候,汉诺塔一般都作为前几个递归实现的例子之一,是入门的好材料。
大家好,很高兴又和各位见面啦!在上一篇我们通过3道习题复习了一下函数的相关知识点,今天我们将讨论一个非常经典的问题——汉诺塔问题。
该文介绍了汉诺塔问题的算法实现和程序实现,主要包括汉诺塔问题的算法和程序的具体实现步骤和实现方式。
汉诺塔V Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2016 Accepted Submission(s): 1193 Problem Description 用1,2,...,n表示n个盘子,称为1号盘,2号盘,...。号数大盘子就大。经典的汉诺塔问 题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于
汉诺塔问题(三柱及四柱)详解 汉诺塔问题-步数 关于步数 是个很简单的问题 高中大家都学过 可能也做过类似的题
汉诺塔是很简单也很经典的算法之一。 汉诺塔是根据一个传说形成的数学问题: 有三根杆子A,B,C 。A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。要求按下列规则将所有圆盘移至C杆:
汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。
hanoi(n-1,x,z,y)# 将前n-1个盘子从x移动到y上
解法参考 : 【组合数学】递推方程 ( 特特解示例 ) 一、特解示例 1 ( 汉诺塔 )
游戏规则:一次只能挪一片;小的只能在大的上面;把所有的从A柱挪到C柱。 递推公式:
领取专属 10元无门槛券
手把手带您无忧上云