首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ps切图必知必会

    对于前端切图,相信很多小伙伴都不会陌生,但是对于新手,有时却很棘手,想着我本是来写代码的,你给我一张图干嘛的, 有时,或许你总奢望着UI设计师,把所有的图都给你切好,你只管撸码的,然而事实并非如此,有时候呢,设计师给我们的图,也并非是一成不变,往往也需要作一些调整,更改,完美的将UI设计图,进行还原实现产品经理的意图,是前端小伙伴职责所在,那么熟练简单的ps操作,就很重要了,虽然我们不是设计者,但是我们是具体的实现者,实现从0到1的过程,至于前端ps操作,绝大多数工作是简单的切图(抠图),测量,图片简单的处理,将图片利用web技术进行填充布局实现静态页面展现就可以了,至于,ps软件,我也只是停留在简单的使用,有时候,在一些群里,看到一些小伙伴,对于切图,有些畏惧,打开ps软件,无从下手,有时候呢,即使自己曾今,ps技术玩的很溜,但是只要一段时间没有去接触,就会很陌生,一些习以为常的技巧,忘得一干二净,非常苦恼,您将在本篇学会一些常用的奇淫绝技,完全可以胜任ps切图工作,今天,就我的学习和使用,跟大家分享一下自己的学习心得,如果你已经是老司机了,可以直接忽略,欢迎路过的老师,多提意见和指正

    02

    本质图像论文笔记

    之前相关人脸本质图像分解的工作都是在合成数据集中完成的, 但到真实的人脸,不同分布使得泛化效果很差,这篇论文的特色是提出了一种新的训练范式(SFS-supervision),从真实无标签的真实人脸数据中学习形状,反射以及光照,并且还提出了一种更强大的网络模型(SFS-Net)。 SFS-supervision分为以下三步: - a)先使用3DMM中合成的数据集训练SFS-Net; - b)然后用训练好的网络对真实的人脸数据集生成伪标签; - c)最后共同训练合成数据集以及带有伪标签的真实数据集。 直接对真实图像使用重建损失进行反向传播会使分解过程中各个组件发生崩溃而产生平凡解,这里的伪标签是很大程度上缓解这种情况的产生。 SFS-Net网络结构如下:

    03
    领券