如上图所示,一般的涉及到的地图的统计涉及到上述所展示的三个状态:1、初始化状态;2、缩放后的状态;3、点击选中显示详情状态。第一种状态下,加载统计图,一般来说,在地图上显示的统计图只是一个趋势或者示意,详细的还得去点击显示;第二种状态,随着地图的缩放,地图统计图随着地图的大小变化;第三种状态,点击选中,在信息框显示详细的统计图的信息。
“GIS讲堂”第九课的内容为“地图统计图的实现”,下面就课程内容做一个详细的说明。
前天有网友提到了这样的需求:1、地图的统计图展示;2、统计图的聚类。统计图的展示非常好理解,但是什么是统计图的聚类的?所谓统计图的聚类是按照地图等级与数据等级,实现统计图的分级展示。鉴于此,趁着这个霾天,早起来给这位网友解下惑,并在此marker一下,有相同需求的筒子可以看过来^_^
停电区域是指供电公司在某一天的某些区域的台区进行停电,台区的下属表箱均受到影响。这是一个地域性问题,所以通过在地图上进行标识这些区域,将数据可视化地展示到分析人员面前,可以很直观看到当天停电影响区域,极大地方便了后续工作的展开。
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
Chart.js 是一个功能强大且易于使用的图表库。 支持多种类型的图表,包括折线图、柱状图、饼图、雷达图等。 Chart.js 具有简单的 API 和丰富的配置选项, 使得在 Vue 中使用它非常方便。
Echarts相信很多小伙伴都了解过,甚至很多都已经用到过。没有了解过的小伙伴,可以先来和我一起了解一下它的作用和历史吧。ECharts,缩写来自Enterprise Charts,商业级数据图表,是由百度公司研发的(并且是开源的),它最初是为了满足公司商业体系里各种业务系统(如凤巢、广告管家等等)的报表需求,在2012年之前这些图表需求都是使用flash去实现的, 后来由于flash退出舞台,凤巢前端技术负责人的Kener-林峰在凤巢数据平台项目中尝试使用Canvas去做图表,他写了一个全新的轻量级Canvas类库ZRender,ZRender可以说是ECharts的前世。
原作者 Amy Lee Walton 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 当设计地图时,我会想:我想让观看者如何阅读地图上的信息?我想让他们一目了然地看出地理区域的测量结果变化吗?我想要显示出特定地区的多样性吗?或者我想要标明某个区域内的高频率活动或者相对的体积/密度? 有多种方法可以在地图中快速而集中的呈现出可视化数据。我常用的几个是: · Dot density (点密度图) ——使用点或其他符号展示特征或现象的集体情况(密度)的地图样式。例如,显示区域内的交
今天接着上一篇继续跟大家分享关于水晶易表动态交互地图的案例操作。 之前曾说过,数据地图作为一种特殊的统计图,在水晶易表中具有与其他普通统计图一样的钻取、动态可见性以及警报功能。 今日案例仍然是之前关于
这几个问题都是问得比较多,也是大家在实际科研中遇到比较多的绘图问题。下面针对每个问题给出解答:
今天继续跟大家分享水晶易表系列关于地图呈现的技巧——自定义数据地图。 该案例主要通过图标模拟与之前学过的动态可见性,根据数据需求,订制动态交互式地图图表。 案例中用到了北京、重庆、广东省三个省级行政
在前文中讲到了在Arcgis for js中统计图的实现,在本文,讲述在Openlayers3中结合highcharts实现统计图。
接下来就以SovitChart平台为例,对数据可视化过程中的常用图表类型进行总结,以便将繁杂的、大量的数据变得轻松易懂。
作者 | 吕薇,腾讯员工 来源 | 互娱增值服务部 原文标题 | 浅析数据可视化与应用思路 一 好的数据可视化图表可以救命 约翰·斯诺(John Snow)在1854年制作了伦敦霍乱地图,通过标记死亡地图,清晰的了解到霍乱的源头,总而挽救了无数的生命。 (图片来源百度) 南丁格尔玫瑰图通过简单数据对比,更明晰表达军队医院季节性死亡率,打动了军方高层,军事改良提案得到了支持,方案实施后,伤员的死亡率很快从42%降低到了2% (图片来源百度) 说回到我们现实的生活,当前和平年代,可视化也是在不断帮
本节教程非常简单,一个美国地图同时作为数据呈现与选择器,控制统计图呈现各州的对应时间段的税收数额指标。 案例截图如下: 数据文件如下: 简要分析下数据结构:A1为整个图表的标题,黄色部分是地图的州名
统计图是辅助作者和读者沟通的有效工具,可以很好的展现数据特征,快捷地将数据内涵呈现出来,同时还可以让内容看起来更加美观易读。统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。
数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
随着DT时代的到来,传统的统计图表很难对复杂数据进行直观地展示。这几年数据可视化作为一个新研究领域也变得越来越火。成功的可视化,如果做得漂亮,虽表面简单却富含深意,可以让观测者一眼就能洞察事实并产生新的理解。可视化(visualization)和可视效果(visual)两个词是等价的,表示所有结构化的信息表现方式,包括图形、图表、示意图、地图、故事情节图以及不是很正式的结构化插图。 基本的可视化展现方式,如条形图、折线图、饼图、雷达图可以很容易通过各种软件(如Excel)容易生成,这些方法是常见可视化问题的
来源:中国统计网 作者:daniel.xie(谢佳标) 原文链接:http://dwz.cn/5Pz3BX 本文长度为2900字,建议阅读5分钟 本文主要为大家介绍一些比较流行的数据展现方式和常用的数据可视化工具和图表。 随着DT时代的到来,传统的统计图表很难对复杂数据进行直观地展示。这几年数据可视化作为一个新研究领域也变得越来越火。成功的可视化,如果做得漂亮,虽表面简单却富含深意,可以让观测者一眼就能洞察事实并产生新的理解。可视化(visualization)和可视效果(visual)两个词是等价的,
本文主要介绍使用ArcGIS JS API 4.14和eCharts 4.7.0来实现在地图上绘制二维图表中的柱状图的实现步骤。
可视化分析主要应用于数据量比较大的关联分析,从各个指标和维度展开用各种统计图和地图,辅之动态效果,使得数据分析结果更加直观有效,让复杂的工作智能化。
开篇主要是介绍了一些常用的数据可视化工具和图表,让各位看官对数据可视化有一个较为全面的认识。后续篇章会深入介绍如何运用工具绘制精美图表的技术细节。 随着DT时代的到来,传统的统计图表很难对复杂数据进行直观地展示。这几年数据可视化作为一个新研究领域也变得越来越火。成功的可视化,如果做得漂亮,虽表面简单却富含深意,可以让观测者一眼就能洞察事实并产生新的理解。可视化(visualization)和可视效果(visual)两个词是等价的,表示所有结构化的信息表现方式,包括图形、图表、示意图、地图、故事情节图以及
现在做数据分析基本上离不开数据可视化,在大量的数据中,有很大一部分数据都与地理信息相关,因此,在数据可视化中,可视化地图是非常重要的一部分。无论是新闻报道,还是商业分析报告,都能看到运用地图来分析展示相关数据。数据可视化地图可以最直观的表达出数据之间的空间关系,因此在很多数据分析场景中被广泛应用。
在本篇博客中,我们将使用Google Earth Engine (GEE) 对MODIS土地覆盖数据进行分析。通过MODIS/061/MCD12Q1数据集,我们可以识别不同的土地覆盖类型,并计算每种类型的总面积。
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
这几天我们的一个学员在看到一幅论文中的一个统计图形(如下)后就@我,咨询这个图形到底怎么绘制?
本文来自作者在GitChat(ID:GitChat_Club)上的精彩分享,CSDN独家合作发布。 随着DT时代的到来,传统的统计图表很难对复杂数据进行直观地展示。这几年数据可视化作为一个新研究领域也变得越来越火。成功的可视化,如果做得漂亮,虽表面简单却富含深意,可以让观测者一眼就能洞察事实并产生新的理解。可视化(visualization)和可视效果(visual)两个词是等价的,表示所有结构化的信息表现方式,包括图形、图表、示意图、地图、故事情节图以及不是很正式的结构化插图。 基本的可视化展现方式,
大数据的出现使数据可视化可谓发挥到了极致。数据可视化主要是为了直观,实时地查看数据变化并做出第一反馈。正因为人们分析了大量数据,所以可视化的数据展示可以使用户很直接的了解并感受到大数据带来的震撼。
最近几节我们要结束掉首页,虽然首页是我们的草稿,承担了我们学习的第一步,但是确实已经占用了过多篇幅。
可视化发展史与测量、绘画、人类现代文明的启蒙和科技的发展一脉相承。在地图、科学与工程制图、统计图表中,可视化理念与技术己经应用和发展了数百年。
所有网页图表均可在个人版WPS上使用,地图可视化、高级桑基图、和弦图、关系图等酷炫图表能够更多被WPS用户使用。
数值型数据表现为数字,在整理时通常进行数据分组。分组是根据统计研究的需要,将数据按照某种标准分成不同的组别。直方图是用矩形的宽度和高度来表示频数分布的图形。用横轴表示数据分组,纵轴表示频数或频率。 例9 某地1993年抽样调查了110名18岁男大学生的身高(cm)资料。现在关注的指标是身高的分布。 SAS程序:
日常生活中,我们或多或少有制作PPT的需求,也许是上级要求,也许是自我展示,我们也逐渐意识到一份精美的PPT对我们的学习工作有多么重要,因此很多人自然而然萌生了学习PPT相关表现技巧以增加个人竞争力的想法。
这里我们先要去想,数据的来源,数据来源在哪?当然是以后的各个工具的使用次数了。那么这个使用次数我们记载到哪里呢?
ECharts 是一个基于 JavaScript 的开源可视化图表库,涵盖各行业图表,多达20多种图表和十几种组件,支持各种图表和组件的任意组合,满足各种需求,也是前端项目中大屏应用最多的。
数据可视化是数据分析中极为重要的部分,而数据可视化图表(如条形图,散点图,折线图,地理图等)也是非常关键的一环。Python作为数据分析中最流行的编程语言之一,有几个库可以创建精美而复杂的数据可视化,允许分析人员和统计人员通过方便地在一处提供界面和数据可视化工具而轻松地根据其规范创建可视数据模型!
注意我们当前做的平台是数据构造平台,既然是数据,那么首页我们要弄成什么样呢? 最好就是 各种统计图 那种吧,看着还高大上~
说起「数据可视化」,大家第一反应可能是在计算机上绘制图表。但实际上,数据可视化的历史要比计算机还长很多。
据可视化是将数据以图形化、可视化的方式呈现,让数据更加直观、易于理解。目前市场上有许多数据可视化工具,本篇文章将为大家推荐30个数据可视化超级工具,并对每个工具的特点进行介绍。
pygal[1] 是一个基于SVG的动态可视化Python库,该库枚举了各种常用不常用的图表类型,满足基本的可视化需求,可以画简单的地图。其特点是接口易用,有很多简化的写法,方便地绘制出统计图表,可以生成迷你图,有基本交互,不需要额外的语句,鼠标移动到图表上有文本标签强化效果。但图表不能直接渲染到notebook里,不能合并多个图,例如柱+折线形成复合图,因此使用范围还是比较有限。
在新的HTML5标准中,新增了一个非常重要的元素—canvas元素。使用该元素,可以在页面中直接进行各种复杂图形的制作。因此,如果使用该元素绘制统计图,比之前使用服务器端控件来生成统计图的方法更加具有优越性,因为使用了该元素之后,绘制统计图的工作是直接在客户端进行的,而不再是在服务器端所完成的了。这不仅意味着不再占用服务器端的资源,而且意味着可以直接利用客户端计算机的强大资源,绘制统计图的速度也就可以大大地得到提高了。而且,因为用来控制canvas图形绘制的脚本代码是可以被压缩的,可以被缓存的,所以也就可以
熟悉 Elastic Stack 的小伙伴对上面的图会感觉并不新鲜,对其中的技术栈也如数家珍,如下图一把梭走起:
领取专属 10元无门槛券
手把手带您无忧上云