我想大多数人和我一样,第一次听见“人工智能”这个词的时候都会觉得是一个很高大上、遥不可及的概念,特别像我这样一个平凡的前端,和大部分人一样,都觉得人工智能其实离我们很遥远,我们对它的印象总是停留在各种各样神奇而又复杂的算法,这些仿佛都是那些技术专家或者海归博士才有能力去做的工作。我也曾一度以为自己和这个行业没有太多缘分,但自从Tensorflow发布了JS版本之后,这一领域又引起了我的注意。在python垄断的时代,发布JS工具库不就是意味着我们前端工程师也可以参与其中?
像素:一张图片在不停的放大到再也无法放大的时候,呈现在我们眼前的是一个个小的颜色块,这种带有颜色的小方块就可以被称为像素
我们选取一种最基本的图像处理——高斯模糊来尝试实现。原理可参考高斯模糊和卷积滤波简介
B站这个视频列表是真的体验感太差了,有时候想把章节复制下来,再对应的章节下面做笔记,实在是太难搞了,于是就有了这篇文文章
(本文基本逻辑:音画原始数据分析工具介绍 → 编码数据分析工具介绍 → 封装格式分析工具介绍)
数字图像处理是一门涉及获取、处理、分析和解释数字图像的科学与工程领域。这一领域的发展源于数字计算机技术的进步,使得对图像进行复杂的数学和计算处理变得可能。以下是数字图像处理技术的主要特征和关键概念
首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。 注意:卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者就没有什么差别了。
来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。
在图像处理和计算机视觉领域,滤波是一项常见的图像处理操作,用于平滑图像、去除噪声等。 OpenCV 提供了多种滤波方法,其中包括均值滤波和高斯滤波。本文将以均值滤波和高斯滤波为中心,为你介绍使用 OpenCV 进行滤波操作的基本步骤和实例。
图 (a): (从左到右) (1) 原始图片 (2) 使用高斯低通滤波器 (3) 使用高斯高通滤波器. 本文中的原始图像来自OpenCV Github示例。
上述代码将会生成一个3×3大小的矩形结构元素。 使用该结构元素实现最大值或者最小值滤波的代码如下:
在图像处理和计算机视觉领域,中值滤波和双边滤波是两种常见的滤波方法,用于平滑图像、去除噪声等。 OpenCV 提供了中值滤波和双边滤波的实现函数,使得图像处理更加灵活和高效。本文将以中值滤波和双边滤波为中心,为你介绍使用 OpenCV 进行滤波操作的基本步骤和实例。
图像预处理算法的好坏直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,为了获取高质量的数字图像,很多时候都需要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
数字图像处理是一门涉及获取、处理、分析和解释数字图像的科学与工程领域。这一领域的发展源于数字计算机技术的进步,使得对图像进行复杂的数学和计算处理变得可能。以下是数字图像处理技术的主要特征和关键概念:
对单张图像循环进行多次超分辨,图像增强,去模糊等图像处理是否合理?以及如何评价图像质量?
看完本篇文章的所有操作和实践,就不需要去花钱修复照片了自己也能做到而且保证十分便捷!本篇文章将介绍常用到的图像去噪滤波算法,采用实例代码和处理效果一并展现的方式进行介绍,能够更直观的看到每种算法的效果。本篇文章偏实战,所以不会涉及到过多每种算法的原理理论计算公式,以一篇文章快速了解并实现这些算法,以效率最高的方式熟练这些知识。
在上一篇,我重点介绍了线性移不变滤波器,并且提到了这些滤波器可以用卷积来实现,其中:
滤波作用 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪 声(包括高斯噪声、椒盐、噪声、随机噪声等)进行抑制,是图像预 处理中不可缺少的操作,其处理效果的好坏将直接影响到到后续图 像处理和分析的有效性和可靠性。 对不同的噪声的抑制,需要使用不同的滤波进行处理,这边主要 介绍几种滤波方法。
图像增强方法在数字图像处理中占有重要地位,它能够有效提高图像的视觉效果,增强图像的细节信息,从而在医学、遥感、工业检测等多个领域发挥重要作用
加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
中值滤波就是用滤波器范围内所有像素值的中值来替代滤波器中心位置像素值的滤波方法,是一种基于排序统计理论的能够有效抑制噪声的非线性信号处理方法。中值滤波计算方式如图5-21所示,将滤波器范围内所有的像素值按照由小到大的顺序排列,选取排序序列的中值作为滤波器中心处黄色像素的新像素值,之后将滤波器移动到下一个位置,重复进行排序取中值的操作,直到将图像所有的像素点都被滤波器中心对应一遍。中值滤波不依赖于滤波器内那些与典型值差别很大的值,因此对斑点噪声和椒盐噪声的处理具有较好的处理效果。
一般可以对图像进行低通滤波、高通滤波 低通滤波:帮助我们去除噪音,模糊图像 高通滤波:帮助我们找到图像的边缘
图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。
ImageFilter模块提供了滤波器相关定义;这些滤波器主要用于Image类的filter()方法。
其中,m=2a+1,n=2b+1, w(s,t)是滤波器系数,f(x,y)是图像值。一般来说最小尺寸是3。
图像增强是指根据特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法。其主要目的是使处理后的图像对某种特定的应用来说,比原始图像更适用。因此,这类处理是为了某种应用目的而去改善图像质量的。处理的结果使图像更适合人的观察或机器的识别系统。应该明确地是增强处理并不能增强原始图像的信息,其结果只能增强对某种信息的辨别能力,而同时这种处理有可能损失一些其他信息。
大家好,又见面了,我是你们的朋友全栈君。要学习高斯模糊我们首先要知道一些基本概念:
前面介绍的滤波函数使用的滤波器都是固定形式的滤波器,有时我们需要根据实际需求调整滤波模板,例如在滤波计算过程中滤波器中心位置的像素值不参与计算,滤波器中参与计算的像素值不是一个矩形区域等。OpenCV 4无法根据每种需求单独编写滤波函数,因此OpenCV 4提供了根据自定义滤波器实现图像滤波的函数,就是我们本章最开始介绍的卷积函数filter2D(),不过根据函数的名称,这里称呼为滤波函数更为准确一些,输入的卷积模板也应该称为滤波器或者滤波模板。该函数的使用方式我们在一开始已经介绍,只需要根据需求定义一个卷积模板或者滤波器,便可以实现自定义滤波。
在第一篇文章里面,我提到计算摄影学是计算机图形学,计算机视觉,光学和传感器等领域的交叉学科,在这个领域我们可以用强大的图像算法,对传感器所获取的信息做任意的处理,得到丰富多彩的效果。
昨天简单介绍了Fourier变换和卷积的概念,有了一个基本的认识之后,再看图像滤波,就不会觉得那么莫名其妙了。图像滤波这其实也是个大坑,里面涉及的东西很多,想通过今天这篇文章一下都掌握了,基本是不可能的。所以我这里就是给新手一个方向,如果想做图像方面的研究,该如何下手,然后怎么继续研究。但是我会尽力把涉及的点都提到,我觉得肯花时间来看我写的这篇文章,肯定是个好学好动手的好孩子。所以看完这个之后,最好再百度or Google一下,找点相关的资料,然后亲手动手实践一下就最好了,这样就有了一个全面的认识。 图像
OpenCV中提供了三种常用的线性滤波函数,它们分别是方框滤波,均值滤波和高斯滤波。
高斯噪声是一种常见的噪声,图像采集的众多过程中都容易引入高斯噪声,因此针对高斯噪声的高斯滤波也广泛应用于图像去噪领域。高斯滤波器考虑了像素离滤波器中心距离的影响,以滤波器中心位置为高斯分布的均值,根据高斯分布公式和每个像素离中心位置的距离计算出滤波器内每个位置的数值,从而形成一个形如图5-15所示的高斯滤波器。之后将高斯滤波器与图像之间进行滤波操作,进而实现对图像的高斯滤波。
信号处理在采样图像中使用的最为广泛。 比如图像的模糊就是将图像和低通滤波器进行卷积,比如盒子滤波器,高斯滤波器等,效果如下:
中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值.
卷积神经网络通常从训练数据中学习有用的特征。第一个卷积层学习到的特征往往是视任务而定的一些训练数据的基本元素。例如,在图像数据中,学习到的特征可以体现边缘和斑点。在后续的网络层中,这些学习到的特征可以表现更加抽象,更高级的特点。
经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《从零学习OpenCV 4》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。
图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
前面通过图片直观的理解了什么是卷积,它也叫滤波器。这里用滤波器进行操作,加深下印象。什么是滤波器呢?这个滤和ps中的滤镜是一个意思,那它跟ps滤镜有什么关系?跟卷积又有什么关系?
方框滤波是所有滤波器中最简单的一种滤波方式。每一个输出像素的是内核邻域像素值的平均值得到。 通用的滤波kernel如下:
2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。
之前在学习CNN的时候,有对卷积进行一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流。
首先我们把所有图像看作矩阵。 模板一般是nxn(n通常是3、5、7、9等很小的奇数)的矩阵。模板运算基本思路:将原图像中某个像素的值,作为它本身灰度值和其相邻像素灰度值的函数。模板中有一个锚点(anchor point),通常是矩阵中心点,和原图像中待计算点对应;整个模板对应的区域,就是原图像中像素点的相邻区域。模板也称为核(kernel)。
图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。
空间滤波是一种采用滤波处理的图像处理方法,目的是达到某种目的(让它更模糊或者让它更清晰)。
过滤是信号和图像处理中基本的任务。其目的是根据应用环境的不同,选择性的提取图像中某些认为是重要的信息。过滤可以移除图像中的噪音、提取感兴趣的可视特征、允许图像重采样等等。频域分析将图像分成从低频到高频的不同部分。低频对应图像强度变化小的区域,而高频是图像强度变化非常大的区域。在频率分析领域的框架中,滤波器是一个用来增强图像中某个波段或频率并阻塞(或降低)其他频率波段的操作。低通滤波器是消除图像中高频部分,但保留低频部分。高通滤波器消除低频部分.
滤波算法是一类用于处理信号和图像中噪声的算法。它们通常通过在信号或图像上应用一个滤波器来实现这一目的。常见的滤波算法包括均值滤波、中值滤波、高斯滤波等。
领取专属 10元无门槛券
手把手带您无忧上云