很多人都建议jquery使用cdn加速的方式引入。当然,我不反对这么做。但是以我自己做项目的便利性,我还是习惯把jq放在本地使用。原因有以下几点:
iframe 会阻塞主页面的 Onload 事件 搜索引擎的检索程序无法解读这种页面,不利于SEO
用户行为分析是数据分析中非常重要的一项内容,在统计活跃用户,分析留存和转化率,改进产品体验、推动用户增长等领域有重要作用。单体洞察、用户分群、行为路径分析是用户行为数据分析的三大利器。
之前项目中都是使用FusionChart和HighChart,基本都是没有购买商业许可。然后现在开发的系统需要交付给客户使用。所以现在图表控件不能直接使用FusionChart和HighChart,通过对比EChart和D3.js,EChart由百度开发,相关的中文文档和问题应该会更好。而且D3.js代码配置和选项相对于EChart也要复杂,所以团队最后决定在图表类库采用EChart。
本篇文章的内容是js清除浏览器缓存,在这里分享给大家,也可以给有需要的朋友做一下参考,大家一起来看一看吧
给你一个非零整数,让你求这个数的n次方,每次相乘的结果可以在后面使用,求至少需要多少次乘。如24:2*2=22(第一次乘),22*22=24(第二次乘),所以最少共2次;
echarts是一款不错的商业级数据图表,目前已更新到echarts3版本,但是由于历史原因,echarts2仍然有比较大的使用占比,之所以讲echarts2的引入方式是因为项目在混合使用echarts2与echarts3的时候遇到了一个问题,这个与我之前写过的一篇文章有关:http://blog.csdn.net/john1337/article/details/54947787,下面入主题。
在JQuery的许多方法中,很多方法的参数可以传入一个JSON对象,比如Ajax方法的第二个参数。怎么将文本转化成JSON对象,需要注意以下问题:
数据可视化能力已经越来越成为各岗位的基础技能。领英的数据报告显示,数据可视化技能在2018年中国最热门技能中排名第一。
上次提到了【数据可视化】Echarts最常用图表,其中还有一些图需要了解,这次来分享一下。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YjDZT727-1660292374008)(https://img-blog.csdn.net/20170515162312438?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcXFfMjg1ODQ2ODU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)]
为了整个界面美观,我们需要对提交和重置按钮美化一番,可是无论用什么CSS样式定义按钮,都很难达到满意的效果,只得用JS+图片的方式进行处理,下边我是总结出的三种方法:
【友情提示:舒克老湿意在为各位准备从事前端工程师岗位的小伙伴提供思路,所有代码仅供参考,切勿背题!!理解问题以及提高自己解决问题的能力最为重要!如果你有更好的解决思路,或者有什么问题,欢迎给舒克老湿留言,大家一同进步。】
python可视化神器——pyecharts库导读: 根据与大佬的询问,故而开启《python pyecharts》这个系列 pyecharts是什么? pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图。使用pyecharts可以生成独立的网页,也可以在flask、django中集成使用。
本文关键字:编码和可视化调试支持内置的语言系统,以浏览器技术化的IDE和WEB APP为中心的可视化程序调试语言系统,让编程和调试装配到浏览器,为每个APP装配一个开发时高级可视debugger支持
大多数互联网企业都提供有类似Notebook类的产品,采用交互式的方式进行数据分析、数据建模及数据可视化。主要实现大多都是基于jupyter 、Zeppelin进行定制化开发,重点会打通大数据计算、存储及底层资源管理,支持常见的机器学习和深度学习计算框架,算法分析及建模中最常见的是采用jupyter notebook,能够在浏览器中,通过编写python脚本 运行脚本,在脚本块下方展示运行结果。
專 欄 ❈陈键冬,Python中文社区专栏作者 GitHub: https://github.com/chenjiandongx ❈ pyecharts 是一个用于生成 Echarts 图表的类库。
在使用echarts的漏斗图行的时候,我们会发现,当数据为0的时候,或者数据中有0的时候,漏斗会变形。显示的很难看,那么怎么保障即便是数据为0了,依然显示漏斗形状?先看效果:
用 Python 中的 pyecharts 库实现帕累托图,转化漏斗图,RFM 客户分类以后的雷达图。
iSlide功能的确很强大,我后面的内容肯定会避开这个强大插件的内置功能,更新一些其它类型的图表内容,比如说今天的内容就是漏斗图的制作。
2.要拦截的请求不是get请求,而是一个post请求 (难点在于:如果拦截的请求是get请求的话,我只需要拿到url,将后面拼接的参数键值对取出来就好了,但是post请求的参数键值对我们是看不到的。。。)
继上一篇如何成为数据分析师系列(一):可视化图表初阶整理了折线图、柱形图、散点图、饼图4种基本图表的特性及其使用场景,这次整理了一些平常不太使用,但在合适的场景的使用它们,往往能为你的分析报告加分不少的图表。
图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
漏斗图是销售领域一种十分常用的图表,主要是用来分析在各个阶段的流失和转化情况。比如在某个商城中,我们统计用户在不同阶段的人数来分析转化率:
因为工作需要,我的收藏夹里收集了很多数据相关的产品,其实加入收藏,也一直没有时间好好去研究。这几天恰好有时间翻出来逐个体验了番,顺手贴出来,大家一起研究。 受篇幅所限,这里只贴了4个,更多的请期待后续
用户行为路径分析是互联网行业特有的一类数据分析方法,它主要根据每位用户在App或网站中的点击行为日志,分析用户在App或网站中各个模块的流转规律与特点,挖掘用户的访问或点击模式,进而实现一些特定的业务用途,如App核心模块的到达率提升、特定用户群体的主流路径提取与浏览特征刻画,App产品设计的优化与改版等。 本文会对用户行为路径分析方法作一些简单的探讨,更多的偏向于一些路径分析业务场景与技术手段的介绍,起到抛砖引玉的作用,欢迎致力于互联网数据分析的朋友们拍砖与批评。以后有机会可以继续介绍分享与实际业务结合较
ECharts 是一个使用 JavaScript 实现的开源可视化库,涵盖各行业图表,满足各种需求。
背景 所有业务都会面对“为什么涨、为什么降、原因是什么?”这种简单粗暴又不易定位的业务问题。为了找出数据发生异动的原因,业务人员会通过使用多维查询、dashboard等数据产品锁定问题,再辅助人工分析
1、js配合传统css属性控制,可以使用setTimeout或者高级的requestAnimationFrame
说到可视化,就不得不说一下大数据,毕竟可视化是解决大数据的一种高效的手段,而如今人人都在谈论大数据,大数据 ≠ 有数据 ≠ 数据量大, 离谱的是,如今就连卖早点的觉得自己能统计每天卖出的种类,都敢说自己是搞大数据。
McKinsey Insights APP 时常分享商业图表,以下是一个简约的气泡示例:
在《用户行为分析模型实践(一)—— 路径分析模型》中,讲述了基于平台化查询中查询时间短、需要可视化的要求,并结合现有的存储计算资源以及具体需求,我们在实现中将路径数据进行枚举后分为两次进行合并。
pyecharts是一个用于生成Echarts图标的类库。实际就是Echarts与Python的对接。
转化分析是我讲的最多的领域。五六年前我讲的时候,大家不是很在乎,因为那时候流量不是事儿。今天,大家似乎都开始意识到,地上钻个孔就能喷出油的日子似乎离我们越来越远,如果不学会压榨流量的价值,盈利也会离我们越来越远。 一旦涉及到转化优化分析要采用什么方法,大家一定会异口同声道:转化漏斗!但我们真的做起来,就会发现,转化漏斗仅仅只是帮我们指出了一个(或者多个)地点(严格讲,地点应该替换为页面或者app的screen)存在问题而已,至于存在什么问题,如何分析,如何解决这些问题,则完全不可能独靠转化漏斗解决。
如果你存在以上疑惑,那本文章正是你需要的,下面将讲解几种app的类型、app与h5的通信原理、如何区分页面用原生开发还是h5开发。
新媒体管家 说到可视化,就不得不说一下大数据,毕竟可视化是解决大数据的一种高效的手段,而如今人人都在谈论大数据,大数据 ≠ 有数据 ≠ 数据量大, 离谱的是,如今就连卖早点的觉得自己能统计每天卖出的种类,都敢说自己是搞大数据。 时间推移到 2009 年,“大数据” 开始才成为互联网技术行业中的热门词汇。对“大数据”进行收集和分析的设想,起初来自于世界著名的管理咨询公司麦肯锡公司;麦肯锡公司看到了各种网络平台记录的个人海量信息具备潜在的商业价值,于是投入大量人力物力进行调研,在 2011 年 6 月发布
小程序组件化开发框架 https://tencent.github.io/wepy/
对于很多产品来说,分析用户行为都是非常重要的。用户分析能推动产品的迭代,为精准营销提供一些定制化服务,驱动我们做一些产品上的决策。常用的用户专题分析方法,包括用户分群、留存分析、转化分析、行为路径分析和事件分析、用户画像、用户增长等。
最近一些朋友向我询问如何做裂变活动。有些问题是,裂变活动有什么玩法,是用海报,还是派红包。但有一个朋友的问题很特别。他是保险行业的,他问我,你觉得我这个裂变流程有什么问题?哪个环节会影响裂变效果?这也是我今天这篇文章想要谈的:裂变流程设计。而裂变流程直接决定了裂变活动的效果。
Excel图表不同段位的玩法, 你在哪一级? L1 青铜级 1.能制作简单的柱形图、条形图类图表; 2.稍微复杂点的雷达图、复合饼图从来不用; 3.从不关心图表做得是否专业。 L2 白银级 1.能熟练制作Excel默认图表; 2.遇到问题网上查查资料琢磨琢磨也能解决; 3.做出来的图表总少点味道。 L3 钻石级 1.能根据数据需求设计图表; 2.会巧妙编辑图表元素,做出专业的商务图表; 3.能有意识地使用图表分析简单数据。 L4 最强王者级 1.用数据分析的思路设计图表; 2.轻松使用公式函数、控件设
词云图,也叫文字云,是对文本中出现频率较高的“关键词”予以视觉化的展现,词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨。
原作者 是不是在等 本文为CDA线下活动分享嘉宾原创作品,转载需授权 去年,乐坛伯乐李宗盛在为某品牌代言时的一句宣言,曾刷爆朋友圈 ——人生没有白走的路,每一步都算数。 上周日,诸葛IO 的产品 VP 于晓松 受邀参加了由CDA数据分析师举办的“探秘数据可视化”数据交流分享沙龙,并围绕《用户行为数据可视化》进行了妙趣横生的解读,现场收获无数迷弟迷妹,今天原景重现当天的分享干货,弥补有些小伙伴无法亲临现场的遗憾! 数据分析师“必备”的 4大技能 作为挖掘数据、洞察用户,并驱动业务决策的数据分析师需要具备
漏斗图在电商领域中观察用户转化率的情形使用非常普遍,本文通过一个模拟的商城用户行为的例子来绘制漏斗图
漏斗图适用于业务流程比较规范、周期长、环节多的单流程单向分析,通过漏斗各环节业务数据的比较能够直观地发现和说明问题所在的环节,进而做出决策。漏斗图的起始总是100%,并在各个环节依次减少,漏斗图用梯形面积表示某个环节业务量与上一个环节之间的差异。漏斗图从上到下,有逻辑上的顺序关系,表现了随着业务流程的推进业务目标完成的情况(如用户的转化情况、订单的处理情况、招聘的录用情况等)。一般来说,所有梯形的高度应是一致的,这会有助人们辨别数值间的差异。
今天跟大家分享漏斗图的制作技巧! ▽ 大家可能不经常听到漏斗图这个名字。其实这种图表常见于数据分析报告以及商务演示场合。漏斗图可以用来反映一组数据的大小趋势,通常是由大到小,并且左右居中排列,效果就像
今天小编给大家介绍的图类型为漏斗图(Funnel Plots),本期就详细介绍该种图表的含义及绘制方法,主要内容如下:
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图。使用pyecharts可以生成独立的网页,也可以在flask、django中集成使用。
二者都是两个循环的算法,复杂度都是O(n²),主要的差异点在于: 1. 冒泡排序在第二个循环中,起始未知是i,而不是1. 2. 需要交换的判断条件二者相反。
领取专属 10元无门槛券
手把手带您无忧上云