插入区间 ,我们再顺便练习两道类似的简单区间题目,比如:判断区间是否重叠(252. 会议室)、56. 合并区间。...思路分析 和上一题一样,首先对区间按照起始端点进行升序排序,然后逐个判断当前区间是否与前一个区间重叠,如果不重叠的话将当前区间直接加入结果集,反之如果重叠的话,就将当前区间与前一个区间进行合并。...插入区间 难度:Medium 给出一个无重叠的 ,按照区间起始端点排序的区间列表。 在列表中插入一个新的区间,你需要确保列表中的区间仍然 有序且不重叠(如果有必要的话,可以 合并区间)。...具体步骤如下: 首先将新区间左边且相离的区间加入结果集(遍历时,如果当前区间的结束位置小于新区间的开始位置,说明当前区间在新区间的左边且相离); 接着判断当前区间是否与新区间重叠,重叠的话就进行合并,直到遍历到当前区间在新区间的右边且相离...删除被覆盖区间 难度:Easy 给你一个区间列表,请你删除列表中被其他区间所覆盖的区间。在完成所有删除操作后,请你返回列表中剩余区间的数目。
实现功能——1:区间加法 2:区间乘法 3:区间覆盖值 4:区间求和 这是个四种常见线段树功能的集合版哦。。。...begin 107 read(j); 108 case j of 109 1:begin //区间加...op(1,1,n,a1,a2,d1); 113 end; 114 2:begin //区间乘...op(1,1,n,a1,a2,d1); 118 end; 119 3:begin //区间覆盖值...cover(1,1,n,a1,a2,a3); 122 end; 123 4:begin //区间求和
在ABAP的设计过程中经常会出现账务期输入,格式为年月。如果我们使用spmon元素为参考,但是系统无输入帮助,用户常常出错,为了避免输入错误。
该模板实现的功能——进行区间的乘法和加法,以及区间的求和(1:乘法 2:加法 3:求和)详见BZOJ1798 1 type 2 vet=record 3
贪心算法篇——区间问题 本次我们介绍贪心算法篇的区间问题,我们会从下面几个角度来介绍: 区间选点 区间分组 区间覆盖 区间选点 我们首先来介绍第一道题目: /*题目名称*/ 区间选点 /*题目介绍...位于区间端点上的点也算作区间内。 /*输入格式*/ 第一行包含整数 N,表示区间数。 接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。.../*问题分析*/ 该题目要求将n个区间划分为m个组,使组中的区间不能接壤 该题和第一题不同之处在于:第一题在排序之后每个区间和后面的区间有关联,不会越界;但该题后面的区间仍旧可以放在前面的组中使用...我们先来介绍一下题目: /*题目名称*/ 区间覆盖 /*题目介绍*/ 给定 N 个闭区间 [ai,bi] 以及一个线段区间 [s,t],请你选择尽量少的区间,将指定线段区间完全覆盖.../*题目分析*/ 我们希望用n个区间去覆盖一块[s,t]之间的区间 那么我们每次使用的一个区间,自然是希望该区间所覆盖的目的部分越大越好,而且我们依旧覆盖过的区间可以直接抛出
如题,实现一个程序,输入N个数,进行如下维护: 1.1 x y 求[x,y]区间的和 2.2 x y 求[x,y]区间的平方和 3.3 x y z 将[x,y]区间全部加上z 4.4 x y 求[x,y...]区间内两两数相乘的积之和(其实4是1、2的简单组合) 如下: 1 var 2 i,j,k,l,m,n:longint; 3 t:int64; 4 a,b,c:array
问题描述: 给出一个区间的集合,请合并所有重叠的区间。...示例 1: 输入: [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18]] 解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6...示例 2: 输入: [[1,4],[4,5]] 输出: [[1,5]] 解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。
/** * 计算两个日期的时长,返回x年x月x日,传入时间戳 */ export function getDateDurations (startDate,...
给出一个长为n的数列,以及n个操作,操作涉及区间加法,区间求和。 这题的询问变成了区间上的询问,不完整的块还是暴力;而要想快速统计完整块的答案,需要维护每个块的元素和,先要预处理一下。...考虑区间修改操作,不完整的块直接改,顺便更新块的元素和;完整的块类似之前标记的做法,直接根据块的元素和所加的值计算元素和的增量。...更改后的区间加法 1 void interval_add(LL ll,LL rr,LL v) 2 { 3 for(LL i=ll;i<=min(where[ll]*m,rr);i++)...i<=where[rr]-1;i++) 19 //这里where[ll]和where[rr]均已暴力处理过,所以只枚举中间的块就可以 20 add[i]+=v; 21 } 区间查询...60 61 for(LL i=1;i<=q;i++) 62 { 63 scanf("%lld",&how); 64 if(how==1)// 区间加
Tag : 「区间 DP」、「动态规划」 有 n 个气球,编号为 0 到 n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。 现在要求你戳破所有的气球。...1*8*1 = 167 示例 2: 输入:nums = [1,5] 输出:10 提示: n = nums.length 1 <= n <= 300 0 <= nums[i] <= 100 区间...+ f[k][r] + arr[l] \times arr[k] \times arr[r]), k \in (l, r) 为了确保转移能够顺利进行,我们需要确保在计算 f[l][r] 的时候,区间长度比其小的...因此我们可以采用先枚举区间长度 len,然后枚举区间左端点 l(同时直接算得区间右端点 r)的方式来做。
第一个在闭区间可导是要用费马引理的,这里说了有极值,极值一定是闭区间上面的性质,不是开区间的性质,如果是开区间,最大值和最小值就没了。...我觉得大多数时候,端点都是极端的,使用闭区间对一研究对象来说是有了实实在在的约束。 可导呢?(可导是说,左右导数存在而且相等) 其次在一点可导的一般情况,是左右导数都存在并且相等。...开区间可导是说明: 这个的存在 因为在端点外一定是有左右导数的,一旦是闭的话,在其中的一个单侧导数就没有了,在端点处就没有了导数,因为不满足导数在一点处的定义。...或者说现在的可导性就成了左可导和右可导,这只是可导的特例,而作为定理,我们需要描述的是一般情况,因此用开区间。 开区间就简单了,只要对称的划拉一个小邻域就好了。...其实就是说:闭区间可导蕴含着开区间可导。 [闭区间可导」是比「闭区间连续、开区间可导」加强了条件,于是,当某个定理对后者成立时对前者也必然成立。
返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表。也就是说,nums 的每个元素都恰好被某个区间范围所覆盖,并且不存在属于某个范围但不属于 nums 的数字 x 。...列表中的每个区间范围 [a,b] 应该按如下格式输出: "a->b" ,如果 a !...= b "a" ,如果 a == b 示例 1: 输入:nums = [0,1,2,4,5,7] 输出:["0->2","4->5","7"] 解释:区间范围是: [0,2] --> "0->2" [4,5...] --> "4->5" [7,7] --> "7" 示例 2: 输入:nums = [0,2,3,4,6,8,9] 输出:["0","2->4","6","8->9"] 解释:区间范围是: [0,0]
题意 给出若干闭合区间,合并所有重叠的部分。 样例 给出若干闭合区间,合并所有重叠的部分。...[15, 18] [15, 18] ] ] 思路 题目没有说是有序的集合,所以我们要进行先根据左端点进行排序,排序后,判断右端点与下一个节点的左端点的大小来决定是否合并区间...(last.end, item.end); } } return ans; } } 原题地址 LintCode:合并区间
本文实例为大家分享了java获取当前时间年月日的具体代码,供大家参考,具体内容如下 import java.text.ParseException; import java.text.SimpleDateFormat
题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N、M、P...接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k...操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果 输出格式: 输出包含若干行整数,即为所有操作3的结果。
给你一个 无重叠的 ,按照区间起始端点排序的区间列表。 在列表中插入一个新的区间,你需要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间)。...互不重叠的前提下,当我们需要插入一个新的区间 时,我们只需要: 找出所有与区间 重叠的区间集合 ; 将 中的所有区间连带上区间 合并成一个大区间; 最终的答案即为不与 重叠的区间以及合并后的大区间。...这样做的正确性在于,给定的区间集合中任意两个区间都是没有交集的,因此所有需要合并的区间,就是所有与区间 重叠的区间。...并且,在给定的区间集合已经按照左端点排序的前提下,所有与区间 重叠的区间在数组 中下标范围是连续的,因此我们可以对所有的区间进行一次遍历,就可以找到这个连续的下标范围。...那么我们应当在什么时候将区间 加入答案呢?由于我们需要保证答案也是按照左端点排序的,因此当我们遇到第一个 满足 的区间时,说明以后遍历到的区间不会与 重叠,并且它们左端点一定会大于 的左端点。
题意描述 给定 n 个区间 [li,ri],要求合并所有有交集的区间。 注意如果在端点处相交,也算有交集。 输出合并完成后的区间个数。...输出格式 共一行,包含一个整数,表示合并区间完成后的区间个数。...数据范围 1≤n≤100000, −109≤li≤ri≤109 思路: 首先对每个区间的左端点进行排序,如果两个区间不能合并的话,那么肯定存在A区间的终点≤B区间的起点,这时候需要更新起点和终点,否则...A区间和B区间可以合并,这个时候只需要更新终点即可。...=-INF) ans.push_back({st,ed});//循环执行结束后,还存在一个区间 //这个时候判断是否是最初的区间,如果不是则添加 reg=ans;
题意 给出一个无重叠的按照区间起始端点排序的区间列表。 在列表中插入一个新的区间,你要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间)。...样例 插入区间 [2, 5] 到 [[1,2], [5,9]],我们得到 [[1,9]]。...插入区间 [3, 4] 到 [[1,2], [5,9]],我们得到 [[1,2], [3,4], [5,9]]。 思路 这是一个有序的区间列表,只要依次遍历,判断当前元素与插入元素的关系。...否者,则代表当前元素与插入元素有交并,将其合并区间。...} results.add(insertPos, newInterval); return results; } } 原题地址 LintCode:插入区间
当然是把区间进行分割:下面列举分割 i,[i+1,j] [i,i+1],[i+2,j] '''''' [i,i+k],[i+k+1,j] k>=0&&k<j-i 怎么求f[i][j]呢?...;len<=n;len++)//长度为1的都是0,不需要从1开始遍历 { for(int left=1;left+len-1<=n;left++)//从1开始生成长度为len的区间...;并且不断更新区间——滑动区间。
给定一个排序数组nums(nums中有重复元素)与目标值target,如果 target在nums里出现,则返回target所在区间的左右端点下标,[左端点, 右端 点],如果target在nums里未出现...2.若无法同时求出区间左右端点,将对目标target的二分查找 增加怎样的限制条件,就可分别求出目标target所在区间 的左端点与右端点?...算法设计 查找区间左端点时,增加如下限制条件: 当target == nums[mid]时,若此时mid == 0或nums[mid-1] < target,则说明mid即 为区间左端点,返回;否则设置区间右端点为...查找区间右端点时,增加如下限制条件: 当target == nums[mid]时,若此时mid == nums.size() – 1或 nums[mid + 1] > target ,则说明mid即为区间右端点...;否则设置区间左端点为mid + 1 ?
领取专属 10元无门槛券
手把手带您无忧上云