首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Intel拟推动概率计算研究

    Intel公司近期正在组建一个战略研究联盟,计划通过推动“概率计算”(probabilistic computing)发展来引领人工智能发展趋势。...据Intel首席技术官Mike Mayberry的说法,解决上述问题的答案是“概率计算”。他说这可能是人工智能(AI)的下一个浪潮。...一个是如何进行有概率计算,另一个是如何存储概率性的记忆或场景。 所以我们一直在做一些内部工作,并与学术界进行了合作,我们已经确定有足够的资源来启动一个研究社区。...我们不认为这是唯一的路径,我们认为还有其他的途径,但这些都将围绕概率计算展开。 Spectrum:以前,该术语被用于描述与人工智能无关的许多事物,例如随机计算和容错计算。它到底是什么样子呢?...Mayberry:我们使用概率计算的方式与以前有所不同。例如,随机计算指的是在有错误的情况下也能得到足够好的答案。模糊逻辑实际上更接近我们现在所讨论的概念,因为在处理信息时,你会有意地追踪不确定性。

    32130

    序列比对(12):计算后验概率

    本文介绍如何计算状态的后验概率。 前文《序列比对(11)计算符号序列的全概率》介绍了如何使用前向算法和后向算法计算符号序列的全概率。...但是很多情况下我们也想了解在整条符号序列已知的情况下,某一位置符号所对应的状态的概率。也就是说要计算 ? 的概率。很明显,此概率为一后验概率。 要计算上述后验概率,可以经过以下推导: ? 其中: ?...根据公式(1),(4),(5),(6),可以重新计算后验概率: ? 据公式(7),后验概率计算就简单多了。可以利用前文代码,稍加增改即可。运行效果如下: ?...(i = 1; i < n; i++) { ls = random(trans[ls], nstate); lr = random(emission[ls], nresult);...\n", stderr); exit(1); } } // 计算后验概率 for (i = 0; i < n; i++) { for (k = 0; k < nstate

    38920

    序列比对(11)计算符号序列的全概率

    本文介绍了如何使用前向算法和后向算法计算符号序列的全概率。 如果一个符号序列中每个符号所对应的状态是已知的,那么这个符号序列出现的概率是容易计算的: ?...但是,如果一个符号序列中每个符号所对应的状态未知时,该怎么求取这条序列的概率呢?我们知道: ?...二者的区别是前向法是从序列头部开始计算,逐步向序列尾部推进;而后向法是从序列尾部开始计算,逐步向序列头部推进。 前向法 定义: ? 图片引自《生物序列分析》 那么: ?...图片引自《生物序列分析》 实现代码和效果 下面的代码首先随机生成一个状态序列和相应的符号序列,然后根据前向法和后向法来计算符号序列的全概率。本文采用缩放因子来解决下溢的潜在问题。...(i = 1; i < n; i++) { ls = random(trans[ls], nstate); lr = random(emission[ls], nresult);

    82210

    Naive Bayes 分类器中概率计算错误

    在 Naive Bayes 分类器中,概率计算错误通常可以归结为几个常见的问题和解决方法。以下是可能导致概率计算错误的一些常见情况及其解决方法,希望本文能对你有帮助。...1、问题背景在实现一个朴素贝叶斯分类器时,作者发现分类器的准确率只有61%左右,并且分类器计算出的概率值与预期不符,即两类的概率值之和不等于1。...2、解决方案朴素贝叶斯分类器不会直接计算概率,而会计算一个“原始分数”,然后将该分数与其他标签的分数进行比较,以对实例进行分类。...probs[label] = score / total然而,需要记住的是,这仍然不是一个真正的概率,正如这个答案中提到的: 朴素贝叶斯倾向于预测概率,这些概率几乎总是非常接近于零或非常接近于一。...test_tgt = load_data(test_filename)​ check_results(test_data, tgt)通过以上代码,相信大家应该能够诊断和解决 Naive Bayes 分类器中概率计算错误的常见问题

    7910

    对真实的世界建模-概率论(分布&计算)

    条件概率: 表示在事件B发生的前提下,事件A发生的概率,记为P(A|B)。 加法定理: 用于计算互斥事件的并事件的概率。...例如,计算“至少出现一次正面”的概率,可以将“出现一次正面”、“出现两次正面”等互斥事件的概率相加。 乘法定理: 用于计算独立事件的交事件的概率。...那么,我们重新计算抽到的是第一个红球的概率(事件A1): P(A1|B) = (P(B|A1) * P(A1)) / P(B) 其中,P(B) 可以通过全概率公式(就是分母,上面的公式)计算得到: P(...计算后验概率P(A|B): 利用贝叶斯公式,根据先验概率和似然概率计算后验概率。 后验概率就是我们根据新证据更新后的对事件A发生概率的置信度。...计算的时候还是两个,看连续的时候有边缘分布密度和分布函数两个东西 要得到X的边缘分布,我们只需将联合概率密度函数f(x,y)对y进行积分。Y的边缘概率密度函数f_Y(y)的计算方式类似。

    14910

    简单的统计学:如何用Python计算扑克概率

    我已经扩展了来自Kevin Tseng的扑克赔率计算器,因此它除了能够计算单个手牌之外,还可以基于范围(可能的手牌)来计算扑克概率。...让我们假设没有对方扑克的先验知识来计算翻牌后的赔率,即在翻牌后,我们将计算出我的牌胜过随机的一对牌的可能性。...verbose, print_elapsed_time = True) Holdem_calc中的函数calculate_odds_villan可以计算出特定的德州扑克赢手的概率...通过运行蒙特卡洛方法可以估算出该概率,也可以通过模拟所有可能的情况来准确地计算出该概率,快速计算翻牌后的确切赔率。因此在这里我们不需要蒙特卡洛近似值。...让我们计算更新后的赔率。

    2.6K30

    北航类脑芯片团队提出“混合概率逻辑计算”机制

    概率计算机中,算术运算是借助于表示数据的逻辑电平的随机和不相关性来执行的,并且由其“高电平”所占的概率来决定。也就是所发生的“高电平”脉冲的频率表示其概率值。...北京航空航天大学类脑芯片教授李洪革谈到:“尽管概率计算比二进制计算存在硬件消耗上的巨大优势,但其基于脉冲频率表示概率数值的本质带来了较大的计算时延的问题。”...基于此,本团队提出了混合概率逻辑计算取代原始单比特流概率计算的思想。...图1 概率混合逻辑计算基础 图2 脉冲式类脑概率神经网络架构 图3 经典概率计算、BISC、确定性和混合逻辑方案的平均误差(MAE)对比结果。 图4....(有别于二进制、概率计算)——混合逻辑SC。

    62010

    JS】527- 关于 JS 中的浮点计算

    原文地址:http://eux.baidu.com/blog/fe/关于js中的浮点运算 ?...稍微有经验大概能反应出来这是存储时数据长度截取产生的原因,但是具体是计算机怎么计算的呢,自己也解释不清,于是带着好奇稍微探索了一下。...浮点数在计算机中的存储 IEEE标准 首先科普一下 js 中使用的二进制浮点数算术标准 IEEE_754 他采用的存储格式为: E = (-1)^ × M × ^E (-1)^s表示符号位,当s=0,...另外,由于js并没有特别区分整型和浮点型,实际上整型在 js 里面也是用浮点数的结构存储的,不过放在了尾数部分,以便于在计算过程总能随意自由切换。...那要怎么在 js 中尽可能准确的计算出结果,以及怎么判断两个小数是否相等呢,敬请期待下回分解~ 参考资料 IEEE_754-1985 how to round binary fractions 浮点数的二进制表示

    1.9K20
    领券