首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Intel拟推动概率计算研究

    Intel公司近期正在组建一个战略研究联盟,计划通过推动“概率计算”(probabilistic computing)发展来引领人工智能发展趋势。...据Intel首席技术官Mike Mayberry的说法,解决上述问题的答案是“概率计算”。他说这可能是人工智能(AI)的下一个浪潮。...一个是如何进行有概率计算,另一个是如何存储概率性的记忆或场景。 所以我们一直在做一些内部工作,并与学术界进行了合作,我们已经确定有足够的资源来启动一个研究社区。...我们不认为这是唯一的路径,我们认为还有其他的途径,但这些都将围绕概率计算展开。 Spectrum:以前,该术语被用于描述与人工智能无关的许多事物,例如随机计算和容错计算。它到底是什么样子呢?...Mayberry:我们使用概率计算的方式与以前有所不同。例如,随机计算指的是在有错误的情况下也能得到足够好的答案。模糊逻辑实际上更接近我们现在所讨论的概念,因为在处理信息时,你会有意地追踪不确定性。

    32130

    序列比对(12):计算后验概率

    本文介绍如何计算状态的后验概率。 前文《序列比对(11)计算符号序列的全概率》介绍了如何使用前向算法和后向算法计算符号序列的全概率。...但是很多情况下我们也想了解在整条符号序列已知的情况下,某一位置符号所对应的状态的概率。也就是说要计算 ? 的概率。很明显,此概率为一后验概率。 要计算上述后验概率,可以经过以下推导: ? 其中: ?...根据公式(1),(4),(5),(6),可以重新计算后验概率: ? 据公式(7),后验概率计算就简单多了。可以利用前文代码,稍加增改即可。运行效果如下: ?...< n; i++) printf("%f ", bscore[l][i]); printf("\n"); } */ return exp(logpx); } // 计算后验概率...\n", stderr); exit(1); } } // 计算后验概率 for (i = 0; i < n; i++) { for (k = 0; k < nstate

    38920

    序列比对(11)计算符号序列的全概率

    本文介绍了如何使用前向算法和后向算法计算符号序列的全概率。 如果一个符号序列中每个符号所对应的状态是已知的,那么这个符号序列出现的概率是容易计算的: ?...但是,如果一个符号序列中每个符号所对应的状态未知时,该怎么求取这条序列的概率呢?我们知道: ?...二者的区别是前向法是从序列头部开始计算,逐步向序列尾部推进;而后向法是从序列尾部开始计算,逐步向序列头部推进。 前向法 定义: ? 图片引自《生物序列分析》 那么: ?...图片引自《生物序列分析》 实现代码和效果 下面的代码首先随机生成一个状态序列和相应的符号序列,然后根据前向法和后向法来计算符号序列的全概率。本文采用缩放因子来解决下溢的潜在问题。...Result result[] = {'1', '2', '3', '4', '5', '6'}; // 所有的可能符号 double init[] = {0.9, 0.1}; // 初始状态的概率向量

    82210

    Naive Bayes 分类器中概率计算错误

    在 Naive Bayes 分类器中,概率计算错误通常可以归结为几个常见的问题和解决方法。以下是可能导致概率计算错误的一些常见情况及其解决方法,希望本文能对你有帮助。...1、问题背景在实现一个朴素贝叶斯分类器时,作者发现分类器的准确率只有61%左右,并且分类器计算出的概率值与预期不符,即两类的概率值之和不等于1。...2、解决方案朴素贝叶斯分类器不会直接计算概率,而会计算一个“原始分数”,然后将该分数与其他标签的分数进行比较,以对实例进行分类。...probs[label] = score / total然而,需要记住的是,这仍然不是一个真正的概率,正如这个答案中提到的: 朴素贝叶斯倾向于预测概率,这些概率几乎总是非常接近于零或非常接近于一。...test_tgt = load_data(test_filename)​ check_results(test_data, tgt)通过以上代码,相信大家应该能够诊断和解决 Naive Bayes 分类器中概率计算错误的常见问题

    7910

    对真实的世界建模-概率论(分布&计算)

    条件概率: 表示在事件B发生的前提下,事件A发生的概率,记为P(A|B)。 加法定理: 用于计算互斥事件的并事件的概率。...例如,计算“至少出现一次正面”的概率,可以将“出现一次正面”、“出现两次正面”等互斥事件的概率相加。 乘法定理: 用于计算独立事件的交事件的概率。...那么,我们重新计算抽到的是第一个红球的概率(事件A1): P(A1|B) = (P(B|A1) * P(A1)) / P(B) 其中,P(B) 可以通过全概率公式(就是分母,上面的公式)计算得到: P(...计算后验概率P(A|B): 利用贝叶斯公式,根据先验概率和似然概率计算后验概率。 后验概率就是我们根据新证据更新后的对事件A发生概率的置信度。...计算的时候还是两个,看连续的时候有边缘分布密度和分布函数两个东西 要得到X的边缘分布,我们只需将联合概率密度函数f(x,y)对y进行积分。Y的边缘概率密度函数f_Y(y)的计算方式类似。

    14910

    先验概率,后验概率,似然概率

    老是容易把先验概率,后验概率,似然概率混淆,所以下面记录下来以备日后查阅。...区分他们最基本的方法就是看定义,定义取自维基百科和百度百科: 先验概率 百度百科定义:先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果...维基百科定义: 在贝叶斯统计中,某一不确定量p的先验概率分布是在考虑"观测数据"前,能表达p不确定性的概率分布。...后验概率 维基百科定义: 在贝叶斯统计中,一个随机事件或者一个不确定事件的后验概率是在考虑和给出相关证据或数据后所得到的条件概率。...同样,后验概率分布是一个未知量(视为随机变量)基于试验和调查后得到的概率分布。

    3.5K60

    概率论02 概率公理

    概率论早期用于研究赌博中的概率事件。赌徒对于结果的判断基于直觉,但高明的赌徒尝试从理性的角度来理解。然而,赌博中的一些结果似乎有矛盾。比如掷一个骰子,每个数字出现的概率相等,都是1/6。...然而,如果有两个骰子,那么出现的2到12这些数字的概率却不相同。概率论这门学科正是为了搞清楚这些矛盾背后的原理。 早期的概率论是一门混合了经验的数学学科,并没有严格的用语。...Kolmogorov建立了概率论的公理化体系,严格定义了概率论的语言。正如现代数学的其他学科一样,概率论的公理化体系同样基于集合论。公理化的概率论体系基于几条简单易懂的公理,衍生出整个概率论的体系。...概率测度有相同的特点,就是上面的第3点。第1,2两点是概率的基本特征,即所有情况的概率总和为1,而概率值不为负。...尽管对概率的理解不同,这两个流派都开衍生出了非常有用的工具。 另一方面,定义也没有告诉我们如何确定函数P,即如何计算概率测度。很多时候,函数P的确定依然基于一些假设和一定程度的直觉。

    83410

    简单的统计学:如何用Python计算扑克概率

    我已经扩展了来自Kevin Tseng的扑克赔率计算器,因此它除了能够计算单个手牌之外,还可以基于范围(可能的手牌)来计算扑克概率。...让我们假设没有对方扑克的先验知识来计算翻牌后的赔率,即在翻牌后,我们将计算出我的牌胜过随机的一对牌的可能性。...verbose, print_elapsed_time = True) Holdem_calc中的函数calculate_odds_villan可以计算出特定的德州扑克赢手的概率...通过运行蒙特卡洛方法可以估算出该概率,也可以通过模拟所有可能的情况来准确地计算出该概率,快速计算翻牌后的确切赔率。因此在这里我们不需要蒙特卡洛近似值。...让我们计算更新后的赔率。

    2.6K30

    概率论03 条件概率

    概率公理中,我们建立了“概率测度”的概念,并使用“面积”来类比。这是对概率的第一步探索。为了让概率这个工具更加有用,数学家进一步构筑了“条件概率”,来深入探索概率中包含的数学结构。...因此,在接受治疗的条件下,康复的概率变成[$ 300/500 = 0.6$]。这个概率值高于总体的康复概率。...我们在B样本空间中寻找A发生的概率。从上面的图中看,就是[$A \cap B$]的面积(概率测度),除以B占据的面积(概率测度),也就是我们条件概率的定义。...另一个推论,用于通过已知的条件概率,来计算一个事件的概率 推论2 有事件[$B_1, B_2, ..., B_n$]。...并计算下面的概率: 已知专家预报下雨时,下雨的概率为0.8; 专家预报不下雨时,下雨的概率为0.2。根据以往的经验,专家一年中有30天预报下雨,剩下的天里预报不下雨。

    868100

    古典概率c30怎么算_概率分为古典概率和什么概率

    概率定义及性质 只要定义在f上的,满足三个性质的p,我们都称为概率。 古典概率和几何概率都满足以下概率概率的性质: 6....,一个事件的概率也会发生变化;关键是看评估这个事件的概率的前提是什么,既是针对什么样的样本空间进行评估的,这才是条件概率真正的涵义所在;所以,笔者给出一个更为准确的定义,如下, 条件概率是指在某个特定前提条件下...相对于前提条件 的概率为 数学上,将上式中的 ()′ 表示为 (|),所以我们有 所以归纳起来,条件概率就是指某个事件 B 对样本空间 Ω 的某个子集 的概率,而与其它某个事件是否真的发生与否无关...,唯一变化的是计算概率的样本空间发生了改变而已。...乘法公式和全概率公式 联合概率:指的就是事件 A 与事件 B 同时发生的概率,我们理解一下,B 事件具有一定概率发生,在 B 事件概率发生时事件 A 此时有一定概率发生, 它们的乘积可就是联合概率

    87260
    领券