首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    .Net轻松实现支付宝服务窗网页授权并获取用户相关信息

    最近在开发一个商业街区的聚合扫码支付功能,其中需要用到的有支付宝,微信两种支付方式,当然对于开发微信支付而已作为自己的老本行已经比较熟悉了,然而对于我来说支付宝支付还是头一次涉及到。这次项目中需要用到的是支付宝公众号支付这一功能,因为需要进行支付宝授权获取到用户的User_ID然后在进行支付宝公众号支付,在这里我就顺带把用户信息也获取了。因为第一次玩,大概配置支付宝开发平台的应用信息到获取到用户User_ID遇到了几个坑,今天记录一下希望能够帮助一下没有做个这样方面的同仁哪些的方有坑,并且加深一下自己的印象,最后我要声明一下我所开发语言是.net mvc 非JAVA,因为这里java和非java的秘钥生成的秘钥格式有所不同。

    06

    【进阶之路】SM4国密算法与实现

    .markdown-body{word-break:break-word;line-height:1.75;font-weight:400;font-size:15px;overflow-x:hidden;color:#333}.markdown-body h1,.markdown-body h2,.markdown-body h3,.markdown-body h4,.markdown-body h5,.markdown-body h6{line-height:1.5;margin-top:35px;margin-bottom:10px;padding-bottom:5px}.markdown-body h1{font-size:30px;margin-bottom:5px}.markdown-body h2{padding-bottom:12px;font-size:24px;border-bottom:1px solid #ececec}.markdown-body h3{font-size:18px;padding-bottom:0}.markdown-body h4{font-size:16px}.markdown-body h5{font-size:15px}.markdown-body h6{margin-top:5px}.markdown-body p{line-height:inherit;margin-top:22px;margin-bottom:22px}.markdown-body img{max-width:100%}.markdown-body hr{border:none;border-top:1px solid #ddd;margin-top:32px;margin-bottom:32px}.markdown-body code{word-break:break-word;border-radius:2px;overflow-x:auto;background-color:#fff5f5;color:#ff502c;font-size:.87em;padding:.065em .4em}.markdown-body code,.markdown-body pre{font-family:Menlo,Monaco,Consolas,Courier New,monospace}.markdown-body pre{overflow:auto;position:relative;line-height:1.75}.markdown-body pre>code{font-size:12px;padding:15px 12px;margin:0;word-break:normal;display:block;overflow-x:auto;color:#333;background:#f8f8f8}.markdown-body a{text-decoration:none;color:#0269c8;border-bottom:1px solid #d1e9ff}.markdown-body a:active,.markdown-body a:hover{color:#275b8c}.markdown-body table{display:inline-block!important;font-size:12px;width:auto;max-width:100%;overflow:auto;border:1px solid #f6f6f6}.markdown-body thead{background:#f6f6f6;color:#000;text-align:left}.markdown-body tr:nth-child(2n){background-color:#fcfcfc}.markdown-body td,.markdown-body th{padding:12px 7px;line-height:24px}.markdown-body td{min-width:120px}.markdown-body blockquote{color:#666;padding:1px 23px;margin:22px 0;border-left:4px solid #cbcbcb;background-color:#f8f8f8}.markdown-body blockquote:after{display:block;content:""}.markdown-body blockquote>p{margin:10px 0}.markdown-body ol,.markdown-body ul{padding-left:28px}.markdown-body ol li,.markdown-body

    03

    25行代码实现完整的RSA算法

    python3.X版本的请点击这里25行代码实现完整的RSA算法   网络上很多关于RSA算法的原理介绍,但是翻来翻去就是没有一个靠谱、让人信服的算法代码实现,即使有代码介绍,也都是直接调用JDK或者Python代码包中的API实现,也有可能并没有把核心放在原理的实现上,而是字符串转数字啦、或者数字转字符串啦、或者即使有代码也都写得特别烂。无形中让人感觉RSA加密算法竟然这么高深,然后就看不下去了。看到了这样的代码我就特别生气,四个字:误人子弟。还有我发现对于“大整数的幂次乘方取模”竟然采用直接计算的幂次的值,再取模,类似于(2 ^ 1024) ^ (2 ^ 1024),这样的计算就直接去计算了,我不知道各位博主有没有运行他们的代码???知道这个数字有多大吗?这么说吧,把全宇宙中的物质都做成硬盘都放不下,更何况你的512M内存的电脑。所以我说他们的代码只可远观而不可亵玩已。   于是我用了2天时间,没有去参考网上的代码重新开始把RSA算法的代码完全实现了一遍以后发现代码竟然这么少,基本上25行就全部搞定。为了方便整数的计算,我使用了Python语言。为什么用Python?因为Python在数值计算上比较直观,即使没有学习过python的人,也能一眼就看懂了代码。而Java语言需要用到BigInteger类,数值的计算都是用方法调用,所以使用起来比较麻烦。如果有同学对我得代码感兴趣的话,先二话不说,不管3X7=22,把代码粘贴进pydev中运行一遍,是驴是马拉出来溜溜。看不懂可以私信我,我就把代码具体讲讲,如果本文章没有人感兴趣,我就不做讲解了。 RSA算法的步骤主要有以下几个步骤:     1、选择 p、q两个超级大的质数 ,都是1024位,显得咱们的程序货真价实。     2、令n = p * q。取 φ(n) =(p-1) * (q-1)。 计算与n互质的整数的个数。     3、取 e ∈ 1 < e < φ(n) ,( n , e )作为公钥对,正式环境中取65537。可以打开任意一个被认证过的https证书,都可以看到。     4、令 ed mod φ(n) = 1,计算d,( n , d ) 作为私钥对。 计算d可以利用扩展欧几里的算法进行计算,非常简单,不超过5行代码就搞定。     5、销毁 p、q。密文 = 明文 ^ e mod n , 明文 = 密文 ^ d mod n。利用蒙哥马利方法进行计算,也叫反复平方法,非常简单,不超过10行代码搞定。     实测:秘钥长度在2048位的时候,我的thinkpad笔记本T440上面、python2.7环境的运行时间是0.035秒,1024位的时候是0.008秒。说明了RSA加密算法的算法复杂度应该是O(N^2),其中n是秘钥长度。不知道能不能优化到O(NlogN)   代码主要涉及到三个Python可执行文件:计算最大公约数、大整数幂取模算法、公钥私钥生成及加解密。这三个文件构成了RSA算法的核心。   这个时候很多同学就不干了,说为什么我在网上看到的很多RSA理论都特别多,都分很多个章节,在每个章节中,都有好多个屏幕才能显示完,这么多的理论,想想怎么也得上千行代码才能实现,怎么到了你这里25行就搞定了呢?北门大官人你不会是在糊弄我们把?其实真的没有,我是良心博主,绝对不会糊弄大家,你们看到的理论确实这么多,我也都看过了,我把这些理论用了zip,gzip,hafuman,tar,rar等很多的压缩算法一遍遍地进行压缩,才有了这个微缩版的rsa代码实现,代码虽少,五脏俱全,是你居家旅行,课程设计、忽悠小白、必备良药。其实里边的几乎每一行代码都能写一篇博客专门进行介绍。   前方高能,我要开始装逼了。看不懂的童鞋请绕道,先去看看理论,具体内容如下:   1. 计算最大公约数   2. 超大整数的超大整数次幂取超大整数模算法(好拗口,哈哈,不拗口一点就显示不出这个算法的超级牛逼之处)   3. 公钥私钥生成

    02
    领券