首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

AVLJava语言)

平衡二叉 平衡二叉也叫平衡二叉查找,又被称为AVL,可以保证查询效率较高。它的特点是:它是一棵空或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉。...显然,对一棵AVL而言,其所有结点的平衡因子只能是-1,0,1.挡在一棵AVL树上插入一个结点时,有可能导致失衡,即出现绝对值大于1的平衡因子。...代码实现: Node: package com.Tree.AVL; public class Node { int value; Node left; Node right;...) { return "Node{" + "value=" + value + '}'; } } AVLTree:...()); } } 二叉排序的运行结果: AVL的运行结果: 从以上两个运行结果可以看出:的高度、的左、右子树高度经过处理后,原来的二叉排序变为了一棵AVL

41420
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AVL

    AVL的概念 二叉搜索虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索将退化为单支,查找元素相当于在顺序表中搜索元素,效率低下。...一棵AVL或者是空,或者是具有以下性质的二叉搜索: 它的左右子树都是AVL 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1) 节点的平衡因子=右子树的高度-左子树的高度 例如:...下图的二叉搜索的每个节点的平衡因子的 绝对值都小于2,并且每个节点的子树也都是AVL AVL的定义 AVL是一种特殊的二叉搜索,它具有高度的平衡,所以为了在插入过程中的各个节点的平衡因子的更新...的插入 AVL的插入是一个难点,它分为好几种情况,其实AVL的插入也就是在二叉搜索中插入新节点,但是由于他引入了平衡因子,需要更新,所以这里的插入节点就比较麻烦,她一共分为两步: 1 插入节点...的验证 AVL是在二叉搜索的基础上加入了平衡性的限制,因此要验证AVL,可以分两步: 1.

    7610

    AVL

    概述 AVL是最早提出的自平衡二叉,在AVL中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡AVL得名于它的发明者G.M. Adelson-Velsky和E.M....AVL树种查找、插入和删除在平均和最坏情况下都是O(log n),增加和删除可能需要通过一次或多次旋转来重新平衡这个。 2....AVL的旋转操作 AVL的基本操作是旋转,有四种旋转方式,分别为:左旋转,右旋转,左右旋转(先左后右),右左旋转(先右后左),实际上,这四种旋转操作两两对称,因而也可以说成两旋转操作。...AVL数的插入和删除操作 (1) 插入操作:实际上就是在不同情况下采用不同的旋转方式调整整棵,具体代码如下: 1 Node_t Insert(Type x, Tree t) { 2 if(t =...总结 AVL是最早的自平衡二叉,相比于后来出现的平衡二叉(红黑,treap,splay)而言,它现在应用较少,但研究AVL对于了解后面出现的常用平衡二叉具有重要意义。

    78591

    AVL

    因此,他是带有条件的搜索二叉。这个条件保证了AVL的深度是O(log n).最简单的想法是左右两棵子树保持相同的高度。但是这种条件过于苛刻,难以使用。AVL只要求深度之差不超过1。...AVL解决了二叉搜索带来的不平衡问题。但是要求变成了我们必须在每次操作后进行调整,以使得AVL保持平衡。...另一种较新的方法是放弃平衡条件,允许有任意的深度,但是在每次操作后要进行调整,以使得后面的操作效率更高。有一种这样的称之为伸展。 在AVL的每一个节点中保留其高度信息是必须的。...在AVL中就不一一实现了,只就插入做了实现,我对删除采用的是懒惰删除法。在此不在说明。只测试一下AVL的深度是不是O(log n)以及中序遍历输出是不是有序的。...这些足以证明它就是我们要求的AVL

    46020

    AVL

    cur; } //连接一下父子节点,插入一个链接一个 cur->_parent = parent; //更新平衡因子 //插入后parent就是新插入cur的父亲节点,_bf是右高度减左高度...root->_kv.first << " "; print(root->_right); } private: Node* _root = nullptr; }; 题目知识点: 1:  AVL...:一棵AVL或者是空,或者是具有以下性质的二叉搜索    1....它的左右子树都是AVL    2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)   故:如果一棵二叉搜索是高度平衡的,它就是AVL。...如果它有n个结点,其高度可保持在O(logN),搜索时间复杂度O(logN)   A:AVL也是二叉搜索  AVL没有极端情况,其是为了防止二叉搜索的极端情况二给出的   C:AVL查询的时间复杂度是

    8010

    AVL

    一棵AVL具有以下性质: AVL是一颗特殊的二叉搜索AVL中插入一个节点后,的所有节点的左右孩子节点的高度差的绝对值小于等于1 左右子树高度差(简称平衡因子)的绝对值不超过1(-1/0/1...),并且它的左右子树也是一颗AVL 如果一棵二叉搜索是高度平衡的,它就是AVL。...的操作 包括:插入节点、调整平衡因子、旋转为AVL 2.2.1 插入节点 AVL也是一棵二叉搜索,因此它在插入数据时也需要先找到要插入的位置然后在将节点插入。...进行结论验证 验证一颗二叉是否是AVL时,只要满足以下两个方面就说明该二叉AVL: 该是一颗二叉搜索:中序遍历得到有序序列。...2021.05.26 [2] 《C++篇-AVL》 CSDN.大大怪先森 2022.06.26 [3] 《数据结构与算法分析 Java语言描述》 (美)Mark Allen Weiss [4]

    37410

    AVL计算平衡因子的计算与AVL的旋转类型Java代码

    1、本篇博文的目标 AVL为了保证平衡因子的绝对值不大于1,需要对节点进行旋转。如下面的这篇博文所示。...AVL的旋转_Colourful.的博客-CSDN博客_avl旋转 如果想要对进行旋转,就需要具备两个先要的条件 (1)平衡因子的判断 (2)旋转的类型 2、如何计算平衡因子和不平衡的情况下的旋转类型...所以问题就转换成了计算的深度。 【的旋转类型】 通过上面的引用的博文可知,的旋转需要知道是是下面的那种类型?...(1)left- left (2) right - right (3) left -right (4) right -left 计算是那种类型只需要在的深度计算的时候,对进行递归的时候记录的递归路径即可...3、代码 //递归方式求的深度,TreeTrace里面有两个变量,一个是depth,该值就是的深度。

    61600

    C++AVL

    AVL 零、前言 一、AVL的概念 二、AVL结点定义 三、AVL的插入 四、AVL的旋转 1、左单旋 2、右单旋 3、左右双旋 4、右左双旋 5、总结 五、AVL的验证 六、AVL的性能...零、前言 本章主要讲解map和set的底层结构平衡二叉搜索的一种-AVL的特性及其实现 一、AVL的概念 引入: map/multimap/set/multiset其底层都是按照二叉搜索来实现的...一棵AVL或者是空或者是具有以下性质的二叉搜索: 它的左右子树都是AVL 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1) 示图: 注:如果一棵二叉搜索是高度可保持在...的插入 AVL就是在二叉搜索的基础上引入了平衡因子,因此AVL也可以看成是二叉搜索 那么AVL的插入过程: 首先按照二叉搜索的方式插入新节点 待插入结点的key值比当前结点小就插入到该结点的左子树...的验证 AVL是在二叉搜索的基础上加入了平衡性的限制 要验证AVL可以分两步: 验证其为二叉搜索 如果中序遍历可得到一个有序的序列,就说明为二叉搜索 实现代码: void _InOrder

    42850

    【C++】AVL

    文章目录 一、什么是 AVL 二、AVL 的节点结构 三、AVL 的插入 四、AVL 的旋转 1、左单旋 2、右单旋 3、左右双旋 4、右左双旋 5、总结 五、VAL 的验证 六、AVL...的删除 七、AVL 的性能 八、AVL 的代码实现 一、什么是 AVL 我们在前面学习二叉搜索时提到,二叉搜索的查找效率为 O(N),因为当数据有序或接近有序时,构建出来的二叉搜索是单分支或接近单分支的结构...通过上面这种方法构建出来的就是平衡二叉搜索,也叫 AVL (由提出它的两个科学家名字的首字母组成);AVL 具有以下特性: AVL 的左右子树都是 AVL AVL 左右子树高度之差的绝对值不超过...根据节点插入位置的不同,AVL 的旋转可以总结为四: 左单旋:新节点插入较高右子树的右侧—右右; 右单旋:新节点插入较高左子树的左侧—左左; 先左单旋再右单旋:新节点插入较高左子树的右侧—左右; 先右单旋再左单旋...下面我们来具体探讨这四情况。

    50100

    【C++】AVL

    一棵AVL或者是空,或者是具有以下性质的二叉搜索: 它的左右子树都是AVL 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1) 如果一棵二叉搜索是高度平衡的,它就是 AVL...K和V整合在了一个中。...K和V详情参考:二叉搜索 2.插入 AVL 就是在二叉搜索的基础上引入了平衡因子,因此 AVL 也可以看成是二叉搜索。...那么 AVL 的插入过程可以分为两步: 按照二叉搜索的方式插入新节点 调整节点的平衡因子 插入节点的方法和我们前文讲到的二叉搜索插入方法一致,我们在此就不重复叙述了。...因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL,但一个结构经常修改,就不太适合。

    30530

    AVL深度解析

    AVL的概念 我们上一篇博客讲了,二叉搜索在极端情况下会退化为单支的情况(具体可以看上一篇博客:http://t.csdnimg.cn/o7PiL)。那我们该如何解决这种问题呢?...如果让左右子树的高度差的绝对值不超过1,那我们就可以避免这种单支的情况。...那我们将具有以下特征的二叉搜索叫做AVL: 左右子树的高度差(这里简称平衡因子)的绝对值不超过1 左右子树都是AVL 如果一棵是高度平衡的,那它就是AVL,如果这棵有n个节点,那我们能把这棵的高度维持在...AVL树节点的定义 我们用代码来刻画这个定义: template struct AVLTreeNode { AVLTreeNode* _left; AVLTreeNode...AVL的基本操作 我们这里着重讲解AVL的插入操作,其他操作与普通的二叉搜索是一样的。

    7810

    C++: AVL

    一棵AVL或者是空, 或者是具有以下性质的二叉搜素: 它的左右子树都是AVL 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1) 如果一棵二叉搜索是高度平衡的,它就是AVL...AVL的插入 AVL就是在二叉搜索的基础上引入了平衡因子,因此AVL也可以看成是二叉搜索。...那么AVL的插入过程可以分为两步: 按照二叉搜索的方式插入新节点 调整节点的平衡因子 // 1. 先按照二叉搜索的规则将节点插入到AVL中 // 2....AVL的删除(了解) 因为AVL也是二叉搜索,可按照二叉搜索的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。...AVL的性能 AVL是一棵绝对平衡的二叉搜索,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 log_2 (N) 。

    10410

    C++【AVL

    1 那么它就是一棵 AVL 注意: AVL 是一棵高度平衡的二叉搜索,如果它有 N 个节点,那么它的高度可以保持在 logN 左右,时间复杂度为 O(logN) 1.1、AVL的定义 AVL...在原 二叉搜索 的基础上添加了 平衡因子 bf 以及用于快速向上调整的 父亲指针 parent,所以 AVL 是一个三叉链结构 所以 AVL 的节点通过代码定义如下: //AVL的节点(..._right; AVLTreeNode* _parent; std::pair _kv; int _bf; //平衡因子,默认:右 - 左 }; 至于 AVLTree 中...关于 AVL 详细操作可以参考这篇 Blog:《AVL(动图详解)》 ---- 3、AVL的合法性检验 3.1、检验依据 如何检验自己的 AVL 是否合法?...AVL ,然后对其进行了实现,AVL 光是一个 插入 操作,就已经涉及了 四大旋转情况,其中每种情况都需要自己画图分析,AVL 是存储静态数据的理想容器,如果想追求性价比,可以选择 红黑 RB-Tree

    14520

    AVL探秘

    一、AVL   AVL是一种平衡查找,在前面的两篇文章:二叉搜索 和 红黑 中都提到过。...因此提出一些对二叉搜索效率改进的树结构使最坏时间复杂度降为O(lgn),AVL和红黑就是其中的代表,除此之外,还有一些如AA-tree、B-tree、2-3-tree等。...使不平衡变平衡最关键的是找到“平衡条件”,我们已经在前面一篇文章中详述了红黑的平衡条件是:对节点进行着色,并约束从根节点到任何叶子节点的长度,其中,约定了5条规定,稍显复杂。...而AVL的平衡条件则显得格外简单:只用保证左右子树的高度不超过1即可。 二、AVL的实现 1、数据结构 节点:因为需要控制节点的高度,所以高度是一个属性。...我们采用尽可能少地改动原有代码的原则来修复,这个原则和红黑的修复操作是一致的,即插入和删除操作我们依然沿用二叉搜索的实现,只在后面添加修复的代码即可。   如何修复?

    952100

    AVL二叉AVL二叉查找

    AVL二叉查找 AVL二叉查找是一种特殊的二叉查找,其规定 每个节点的左子树和右子树的高度差最多是1 AVL调整算法 AVL插入一个新的节点到某个节点下破坏AVL的要求时,对于破坏条件的第一个节点...单旋转调整 考虑入下左图所示的情况,假设X与Z的深度相同且,整棵符合AVL条件: ? 单旋转 若插入一个小于b的值,则X的深度将+1,从a节点来看,左子树的深度就比右子树大2,不符合条件。...AVL条件:X深度比Z深1,但Z的位置要比X低1,因此a节点开始的满足AVL条件。a原来的深度为max{X+2,Y+2,Z+1},现在a的深度是max{X+1,Y+2,Z+2}。...由于原满足AVL条件,则Y的深度不会比原来X的深度深,所以深度分别为X1+2,X2+1,其中X2=X1+1,所以a节点深度不变,不影响上层AVL结构。...双旋转 设左图为一颗AVL,X,Y的深度比W,Z浅1(X,Y深度相等,W,Z深度相等),假若在X或Y中插入一个节点,在a节点的AVL条件将不同,需要使用双旋转调整,调整成右图的样子,合理性如下: 查找条件

    64240

    C++——AVL

    一棵AVL或者是空,或者是具有以下性质的二叉搜索: 它的左右子树都是AVL左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1) 右子树高度-左子树高度=平衡因子 这棵是平衡的...节点定义 对于AVL结点的定义,不仅仅多了一个平衡因子,还多了一个父节点的指针,是一个三叉链的结构。...的根节点 }; 旋转 旋转的目的; 1.让这棵的左右高度差不超过1 2.旋转之后也要保持这棵AVL 3.更新调节平衡因子 4.旋转后的高度要和插入前相同 左单旋与右单旋 左单旋:...验证AVL 这里还需要加一个平衡因子的判断; int _Height(Node* root)//计算的高度 { if (root == nullptr) return 0; int...l + 1 : r + 1;//返回左子树和右子树最高高度 } bool _IsBalanceTree(Node* root) { if (root == nullptr)//空也是AVL

    24720
    领券