首先我们需要安装PIL和pytesseract库。 PIL:(Python Imaging Library)是Python平台上的图像处理标准库,功能非常强大。 pytesseract:图像识别库。
之前为给位朋友分享过:GitHub开源:17M超轻量级中文OCR模型、支持NCNN推理,该项目仅仅支持中文OCR识别,本篇博文将分享支持100多种语言的OCR文字识别项目:Tesseract OCR。
Tesseract的OCR引擎最先由HP实验室于1985年开始研发,至1995年时已经成为OCR业内最准确的三款识别引擎之一。2005年,Tesseract由美国内华达州信息技术研究所获得,并求诸于G
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
Tesseract是一个开源的ocr(光学字符识别,即将含有文字的图片转化为文本)引擎,可以开箱即用,项目最初由惠普实验室支持,1996年被移植到Windows上,1998年进行了C++化。在2005年Tesseract由惠普公司宣布开源。2006年到现在,都由Google公司开发。
Tesseract 是一款由HP实验室开发由Google维护的开源OCR(Optical Character Recognition , 光学字符识别)引擎。与Microsoft Office Document Imaging(MODI)相比,我们可以不断的训练的库,使图像转换文本的能力不断增强;如果团队深度需要,还可以以它为模板,开发出符合自身需求的OCR引擎。 GitHub 地址:https://github.com/tesseract-... 安装包官方下载地址:https://digi.bib.uni-mannheim... 安装包百度云盘下载地址:https://pan.baidu.com/s/1AOsJ...
最近要倒腾一下文字识别,直接上手iOS的识别遇到了一些困难,于是决定先在Mac上做一做,会比较简单。
本文参考http://blog.sina.com.cn/s/blog_4aa166780101cji7.html实现,在这里感谢该文章的作者。 OCR(Optical Character Recognition):光学字符识别,是指对图片文件中的文字进行分析识别,获取的过程。 Tesseract:开源的OCR识别引擎,初期Tesseract引擎由HP实验室研发,后来贡献给了开源软件业,后经由Google进行改进,消除bug,优化,重新发布。当前版本为3.02 项目下载地址为:http://jaist.dl.
在使用pytesseract的过程中,有时候会遇到“[WinError 2] 系统找不到指定的文件”这个错误。这个错误通常是由于tesseract路径配置不正确导致的。下面是解决此问题的步骤:
but,Tesseract是老外开发的,默认不支持中文,需要我们加个中文语言包 将文件chi_sim.traineddata (密码:nd6p) 放到安装目录:Tesseract-OCR\tessdata文件夹内,再整张图
近期Github开源了一款基于Python开发、名为Textshot的截图工具,刚开源不到半个月已经500+Star。
Oracle 11g RAC中的IP主要有:Public IP、VIP、SCAN VIP、Private IP这几种。一般这类改IP地址或者网卡名称的需求主要场景有:机房搬迁网络变更、系统上线由测试IP更改为生产IP、系统层面双网卡绑定或者解绑等。
首先和大家演示一下实现的效果,我们的最终目标是基于一张图片,通过技术的手段自动提取图片的信息,并展示到文档中,提高文档编写的效率。
本文将具体介绍如何在Python中利用Tesseract软件来识别验证码(数字加字母)。
周末在家帮娃检查口算作业,发现一个非常有意思的应用:拿手机对着作业拍照,立马就能知道有没有做错的题目。如果做错了,还会标记出来,并给出正确答案。
目前,很多网站为了防止爬虫肆意模拟浏览器登录,采用增加验证码的方式来拦截爬虫。验证码的形式有多种,最常见的就是图片验证码。其他验证码的形式有音频验证码,滑动验证码等。图片验证码越来越高级,识别难度也大幅提高,就算人为输入也经常会输错。本文主要讲解识别弱图片验证码。
Oracle Database - Enterprise Edition - 版本 10.1.0.2 到 12.2.0.1 [发行版 10.1 到 12.2] 本文档所含信息适用于所有平台
前言 文字识别是计算机视觉研究领域的分支之一,归属于模式识别和人工智能,是计算机科学的重要组成部分 本文将以上图为主要线索,简要阐述在文字识别领域中的各个组成部分。 一 ,文字识别简介 计算机文字识别,俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR),它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。OCR技术是实现文字高速录入的一项关键技术。 在OCR技术中,印刷体文字识别是开展最早,技术
ocr图片识别通常可以利用tesserocr模块,将图片中内容识别出来并转换为text并输出
Tessseract是一款由HP实验室开发由 Google 维护的开源 OCR(Optical Character Recognition , 光学字符识别)引擎。能够支持中文十分难得。虽然其识别效果不是很理想,但是对于要求不高的中小型项目来说,已经足够用了。
Tesseract 是一个开源的 OCR 引擎,可以识别多种格式的图像文件并将其转换成文本,最初由 HP 公司开发,后来由 Google 维护。下载地址:https://digi.bib.uni-mannheim.de/tesseract/
OCR(Optical character recognition) —— 光学字符识别,是图像处理的一个重要分支,中文的识别具有一定挑战性,特别是手写体和草书的识别,是重要和热门的科学研究方向。可惜国内的科研院所,基本没有几个高识别率的训练集——笔者联系过北京语言大学研究生一篇论文的作者,他们论文说有%90的正确识别率,结果只做了20个笔画简单的汉字(20/6753 = %0.3 常用简体汉字的千分之三),然后找了20个学生,各自手写了一遍。真的是为了论文而论文,而且很会选择样本(小而简单)
现在很多网站都会使用验证码来进行反爬,所以为了能够更好的获取数据,需要了解如何使用打码平台爬虫中的验证码
在当今这样的时代,任何组织或公司要扩大规模并保持相关性,都必须改变他们对技术的看法,并迅速适应不断变化的形势。已经知道Google如何将图书数字化。还是Google Earth如何使用NLP识别地址。或者如何读取发票,法律文书等数字文档中的文本。
现在我们介绍的是不花钱的免费代理IP池。原理很简单,大家去百度或者谷歌搜索免费代理IP总能搜到几个可用的免费代理IP,有些是付费代理IP网站免费放出一两个来给大家试用的,但是一两个代理IP还是不够用的,至少得有十几个才够我们轮换使用,这时候就有好心人将全网大部分释放免费代理IP的网站给爬了,然后设定一个定时检查器,不断检查这些免费IP是否可用,不能用的就移除,能用的保留,相当于维护了一个可用IP池,这样每次爬虫发起请求时,就从IP池取一个使用。
各位在企业中做Web漏洞扫描或者渗透测试的朋友,可能会经常遇到需要对图形验证码进行程序识别的需求。很多时候验证码明明很简单(对于非互联网企业,或者企业内网中的应用来说特别如此),但因为没有趁手的识别库,也只能苦哈哈地进行人肉识别,或者无奈地放弃任务。在这里,我分享一下自己使用Python和开源的tesseract OCR引擎做验证码识别的经验,并提供相关的源代码和示例供大家借鉴。 一、关于图形验证码识别与tesseractOCR 尽管多数图型验证码只有区区几个数字或字母,但你可能听说了,在进行机器识别的过程
C#解析PDF的方式有很多,比较好用的有ITestSharp和PdfBox。 PDF内容页如果是图片类型,例如扫描件,则需要进行OCR(光学字符识别)。 文本内容的PDF文档,解析的过程中,我目前仅发现能以字符串的形式读取的,不能够读取其中的表格。据说PDF文档结构中是没有表格概念的,因此这个自然是读不到的,如果果真如此,则PDF中表格内容的解析,只能对获取到的字符串按照一定的逻辑自行解析了。 ITestSharp是一C#开源项目,PdfBox为Java开源项目,借助于IKVM在.Net平台下有实现。 Pd
OCR就好比Windows的一个注册表,存储了所有与集群,RAC数据库相关的配置信息。而且是公用的配置,也就是说多个节点共享相同的配置信息。因此该配置应当存储于共享磁盘。本文主要基于Oracle 10g RAC描述了集群的OCR以及OCR产生的健忘问题。
Oracle集群使用两种类型的文件来管理集群资源和节点:OCR(Oracle Cluster Registry,Oracle集群注册表)和VF(Voting File,表决磁盘文件)。这两种文件必须存放在共享存储上。其中,OCR相当于集群的控制文件,用于解决健忘问题,VF用于解决脑裂问题。在Oracle 11.2中引入一个新的文件,称作OLR(Oracle Local Registry,Oracle本地注册表),它只允许存放在本地。
基于文字识别与文本翻译技术,满足用户翻译图片文字的需求。只需要通过调用图片翻译API,传入图片,指定源语言与目标语言,通过POST请求方式,就可以识别图片中的文字并进行翻译。
使用该命令来修复一个节点的OCR配置信息,可能的原因为在该节点离线时,OCR信息发生变化
OCR相当于Windows的注册表。对于Windows而言,所有的软件信息,用户,配置,安全等等统统都放到注册表里边。而集群呢,同样如此,所有和集群相关的资源,配置,节点,RAC数据库统统都放在这个仓库里。如果OCR被破坏则导致集群服务启动异常,需要修复OCR。因此OCR的管理与维护对于整个集群而言,是相当重要的。本文主要描述了Oracle 10g RAC下的OCR的管理与维护。
在现代信息处理和管理的时代,光学字符识别(OCR)技术成为了一个非常重要的工具。OCR技术能够将图像中的文本内容转换为可编辑的文本,广泛应用于文档管理、数据录入、票据处理等领域。Surya-OCR是一个强大的OCR库,提供了简便的API和高效的字符识别能力,适用于各种场景下的文本提取需求。
在日常的工作中,例如自动化测试开展时,经常涉及到一些验证码识别、文本识别、图像识别的场景,市面上虽也有很多识别工具,但质量、准确性参差不齐。
Oracle Clusterware把整个集群的配置信息放在共享存储上,这些信息包括了集群节点的列表、集群数据库实例到节点的映射以及CRS应用程序资源信息。也即是存放在ocr 磁盘(或者ocfs文件)上。因此对于这个配置文件的重要性是不言而喻的。任意使得ocr配置发生变化的操作在操作之间或之后都建议立即备份ocr。本文主要基于Oracle 10g RAC环境描述OCR的备份与恢复。 OCR 相关参考: Oracle RAC OCR 与健忘症 Oracle RAC OCR 的管理与维护 一、OCR的备份与恢复概念 与Oracle数据库备份恢复相似,OCR的备份也有物理备份或逻辑备份的概念,因此有两种备份方式,两种恢复方式。 物理备份与恢复: 缺省情况下,Oracle 每4个小时对其做一次备份,并且保留最后的3个副本,以及前一天,前一周的最后一个备份副本。 用户不能自定义备份频率以及备份文件的副本数。 对于OCR的备份备份由是由Master Node CRSD进程完成,因此备份的默认位置是$CRS_HOME/crs/cdata/<cluster_name>目录下。 备份的文件会自动更名,以反应备份时间顺序,最近一次的备份叫作backup00.ocr。 由于是在Master Node的节点之上进行备份,因此备份文件仅存在于Master Node节点。 对于Master Node的节点crash之后则由剩余节点接管。 备份目录可以通过ocrconfig -backuploc <directory_name> 命令修改。 OCR磁盘最多只能有两个,一个Primary OCR 和一个Mirror OCR。两者互为镜像以避免单点故障。 对于物理备份恢复,不能简单的使用操作系统级别的复制命令(使用ocr文件时)来完成,该操作将导致ocr不可用。 逻辑备份与恢复: 使用ocrconfig -export 方式产生的备份,统称之为逻辑备份。 对于重大的ocr配置发生变化前后,如添加删除节点,修改集群资源,创建数据库等,都建议使用逻辑备份。 对于由于错误配置而导致的ocr被损坏的情形下,我们可以使用ocrconfig -import方式进行恢复。 对于这种逻辑方式也可以还原丢失或损坏的ocr磁盘(文件)。 备份建议: 将oracle的自动备份产生的文件复制到共享或其它可用存储设备上。 每天至少导出一次ocr配置信息。 二、备份OCR
oracle 11g 以后 ocr 能够放到 asm 磁盘上,而ASM的启动依赖于ocr和votedisk,所以在丢失ocr或votedisk 会导致cluter无法正常启动
http://blog.itpub.net/26736162/viewspace-2141215/
上节介绍运行集群环境所需的进程,这节总体上说Oracle集群的安装,升级以及克隆等
本文作者系肖遥(花名),原甲骨文技术支持工程师 ,专注于Oracle RAC领域。个人主页:
OCR(光学字符识别)是是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。目前,这项技术在拍照搜题、拍照翻译等应用中得到广泛使用。
在RAC中有两种Masters,一种是Clusterware层面的,另一种是Block层面的Masters。
在当今人工智能技术已经渗透到各个领域。其中,OCR(Optical Character Recognition)技术将图像中的文字转化为可编辑的文本,为众多行业带来了极大的便利。PaddleOCR是一款由百度研发的OCR开源工具,具有极高的准确率和易用性。
与Oracle数据库的备份恢复相似,OCR的备份也有物理备份和逻辑备份,因此有两种备份方式和两种恢复方式。物理备份是自动进行的,逻辑备份需要手动进行。
Asprise是一个优秀的OCR软件,下面是Asprise_Python的官网网页
如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: <= 且 <= ( >= 且 >= ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。 堆的性质: 堆中某个节点的值总是不大于或不小于其父节点的值; 堆总是一棵完全二叉树。
实验环境准备: RHEL 6.5 + Oracle 11.2.0.4 RAC (2nodes)
领取专属 10元无门槛券
手把手带您无忧上云