在hbase集群故障时,hbase client无法连接region server的时候,因为重试参数配置问题,程序并不会直接抛出异常,而是会一直重试,导致异常报警没有触发。此篇文章讲述client的重试机制及参数配置。
本文目的是介绍使用C++如何操作HBase。从HBase 0.94开始,HBase新增thrift2,本文只介绍和讨论thrift2相关的。hbase-1.1.2使用的thrift估计是thrift-0.9.0版本。
ApacheFlink是一个框架和分布式处理引擎,用于在无限和有界数据流上进行有状态计算。Flink被设计成在所有常见的集群环境中运行,以内存速度和任何规模执行计算。
1)、标签数据 标签管理平台中,每个标签开发时,首先需要在管理平台上注册(新建标签:4级标签和5级标签) 业务标签和属性标签 业务标签对应标签模型,每个标签模型就是Spark Application,运行程序可以给用户打上标签:TagName 模型表中存储数据:spark application运行时参数设置核心数据: tagName -> tagRule:标签规则
本篇博客小菌为大家带来关于HBase的预分区的内容分享! 在正式开始介绍之前,我们先联系一下之前所学的内容 , 想想原本数据分区(分region)的过程是怎样的? 一个
大家在使用HBase的过程中,总是面临性能优化的问题,本文从HBase客户端参数设置的角度,研究HBase客户端数据批量插入性能优化的问题。事实胜于雄辩,数据比理论更有说服力,基于此,作者设计了这么一个HBase数据插入性能优化实测实验,希望大家用自己的服务器跑出的结果,给自己一个值得信服的结论。
4.5 启动成功 出现 Master has completed initialization
温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- HBase集群在实际的使用的过程会遇到,不重要的业务使用集群资源过多,从而导致一些比较重要的业务无法正常运行,针对这种多工作负载问题社区提出了相应的应对措施,主要有如下几种: 1.Quotas:资源限制主要是针对User、NameSpace及Table
在 HBase 中,row key 可以是任意字符串,最大长度 64KB,实际应用中一般为 10~100bytes,存为 byte[]字节数组,一般设计成定长的。
一、调优的目的 充分的利用机器的性能,更快的完成mr程序的计算任务。甚至是在有限的机器条件下,能够支持运行足够多的mr程序。 二、调优的总体概述 从mr程序的内部运行机制,我们可以了解到一个mr程序由mapper和reducer两个阶段组成,其中mapper阶段包括数据的读取、map处理以及写出操作(排序和合并/sort&merge),而reducer阶段包含mapper输出数据的获取、数据合并(sort&merge)、reduce处理以及写出操作。那么在这七个子阶段中,能够进行较大力度的进行调优的就
HBase 内置的处理拆分和合并的机制一般是合理的,并且它们按照预期处理任务,但在有些情况下,还是需娶按照应用需求对这部分功能进行优化以获得额外的性能改善。 管理拆分 通常HBase 是自动处理region拆分的:一旦它们达到了既定的阈值,region将被拆分成两个,之后它们可以接收新的数据并继续增长。这个默认行为能够满足大多数用例的需求。 其中一种可能出现问题的情况被称之为“拆分/合并风暴”: 当用户的region大小以恒定的速度保持增长时,region拆分会在同一时间发生,因为同时需要压缩region
由于 HBase 是以 HDFS 作为底层存储文件系统的,因此部署好 Hadoop 并启动服务是 HBase 部署的先决条件。我们将在《第三篇:Hadoop部署配置及运行调试(下) - HA完全分布式》中部署的 Hadoop 上,以完全分布式模式来安装部署并运行 HBase.
从 1970 年开始,大多数的公司数据存储和维护使用的是关系型数据库,大数据技术出现后,很多拥有海量数据的公司开始选择像Hadoop的方式来存储海量数据。
离线数据分析平台实战——260用户数据ETL ETL目标 解析我们收集的日志数据,将解析后的数据保存到hbase中。 这里选择hbase来存储数据的主要原因就是: hbase的宽表结构设计适合我们的这样多种数据格式的数据存储(不同event有不同的存储格式)。 在etl过程中,我们需要将我们收集得到的数据进行处理,包括ip地址解析、userAgent解析、服务器时间解析等。 ETL存储 etl的结果存储到hbase中, 由于考虑到不同事件有不同的数据格式, 所以我们将最终etl的结果保存到hbas
1 java.io.IOException: java.io.IOException: java.lang.IllegalArgumentException: offset (0) + length (8) exceed the capacity of the array: 4 做简单的incr操作时出现,原因是之前put时放入的是int 长度为 vlen=4 ,不适用增加操作,只能改为long型 vlen=8 2 写数据到column时 org.apache.hadoop.hbase.client.R
Hadoop离线数据分析平台实战——380MapReduce程序优化 项目进度 模块名称 完成情况 用户基本信息分析(MR)� 完成 浏览器信息分析(MR) 完成 地域信息分析(MR) 完成 外链信息分析(MR) 完成 用户浏览深度分析(Hive) 未完成 订单分析(Hive) 未完成 事件分析(Hive) 未完成 调优的目的 充分的利用机器的性能,更快的完成mr程序的计算任务。 甚至是在有限的机器条件下,能够支持运行足够多的mr程序。 说的直接一点就是:调优
DataX Web 是在 DataX 之上开发的分布式数据同步工具,提供简单易用的 操作界面,降低用户使用 DataX 的学习成本,缩短任务配置时间,避免配置过程中出错。用户可通过页面选择数据源即可创建数据同步任务,支持 RDBMS、Hive、HBase、ClickHouse、MongoDB 等数据源,RDBMS 数据源可批量创建数据同步任务,支持实时查看数据同步进度及日志并提供终止同步功能,集成并二次开发 xxl-job 可根据时间、自增主键增量同步数据。
HBase 数据库默认的客户端程序是 HBase Shell,它是一个封装了 Java 客户端 API 的 JRuby 应用软件。用户可以在 HBase 的 HMaster 主机上通过命令行输入 hbase shell,即可进入 HBase 命令行环境,以命令行的方式与 HBase 进行交互。使用 quit 或 exit 命令可退出 HBase 命令行环境。
Hbase Rowkey CF 架构 概述 预分区及Rowkey设计 学习笔记介绍了Region类似于数据库的分片和分区的概念,每个Region负责一小部分Rowkey范围的数据的读写和维护,Region包含了对应的起始行到结束行的所有信息。master将对应的region分配给不同的RergionServer,由RegionSever来提供Region的读写服务和相关的管理工作。
HBase优化能够让我们对调优有一定的理解,当然企业并不是所有的优化全都用,优化还要根据业务具体实施。
近期整理多个 HBase 集群的 JVM 参数,发现都是默认的 CMS GC 配置,如何调优 JVM 参数就成了一个绕不过的话题。因此,为了寻求一个 CMS GC 的 JVM 合理参数配置,笔者参考多篇社区文章及相关博客,总结了一些 CMS 相关的知识点,以及一套基于 CMS 的 JVM 参数配置。
HBase, Hadoop Database,是一个高可靠性、高性能、面向列存储、可伸缩、 实时读写的分布式开源 NoSQL 数据库。主要用来存储非结构化和半结构化的松散数据。
hudi详细介绍见hudi官网 http://hudi.apache.org/cn/docs/0.5.0-quick-start-guide.html
package org.ucas.hbase; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.URI; import java.net.URISyntaxException; import java.util.HashMap; import java.util.Map; import org.apache.commons.lang
前言 最近在跟进Hbase的相关工作,由于之前对Hbase并不怎么了解,因此系统地学习了下Hbase,为了加深对Hbase的理解,对相关知识点做了笔记,并在组内进行了Hbase相关技术的分享,由于Hb
HBCK2工具是修复工具,可用于修复Apache HBase集群,包括CDP中的Apache HBase集群。HBCK2工具是Apache HBase hbck工具的下一版本。
这一章讲hbase的缓存机制,这里面涉及的内容也是比较多,呵呵,我理解中的缓存是保存在内存中的特定的便于检索的数据结构就是缓存。 之前在讲put的时候,put是被添加到Store里面,这个Store是个接口,实现是在HStore里面,MemStore其实是它底下的小子。 那它和Region Server、Region是什么关系? Region Server下面有若干个Region,每个Region下面有若干的列族,每个列族对应着一个HStore。 HStore里面有三个很重要的类,在这章的内容都会提到。 p
本文集合了小编在日常学习和生产实践中遇到的使用Hbase中的各种问题和优化方法,分别从表设计、rowkey设计、内存、读写、配置等各个领域对Hbase常用的调优方式进行了总结,希望能对读者有帮助。本文参考结合自己实际优化经验,参考了大量官网和各个前辈的经验,调优后生产环境中的Hbase集群支撑了约50万/s的读和25万/s的写流量洪峰。感谢各位的经验和付出。
[HBase]——Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据、实现数据分布式存储提供可靠的方案。从功能上来讲,HBase不折不扣是一个数据库,与我们熟悉的Oracle、MySQL、MSSQL等一样,对外提供数据的存储和读取服务。而从应用的角度来说,HBase与一般的数据库又有所区别,HBase本身的存取接口相当简单,不支持复杂的数据存取,更不支持SQL等结构化的查询语言;HBase也没有除了rowkey以外的索引,所有的数据分布和查询都依赖rowkey。
map执行中内存溢出代表了所有map类型的操作,包括:flatMap,filter,mapPatitions等。
为了加深对Hbase的理解,对相关知识点做了笔记,并在组内进行了Hbase相关技术的分享,由于Hbase涵盖的内容比较多,因此计划分享2期,下面就是针对第一期Hbase技术分享整体而成,第一期的主要内容如下:
map执行中内存溢出代表了所有map类型的操作,包括:flatMap,filter,mapPatitions等。shuffle后内存溢出的shuffle操作包括join,reduceByKey,repartition等操作。后面先总结一下我对Spark内存模型的理解,再总结各种OOM的情况相对应的解决办法和性能优化方面的总结。如果理解有错,希望在评论中指出。
作者:Jiang Hongxiang 来源:比特科技 简介 HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据、实现数据分布式存储提供可靠的方案。从功能上来讲,HBase不折不扣是一个数据库,与我们熟悉的Oracle、MySQL、MSSQL等一样,对外提供数据的存储和读取服务。而从应用的角度来说,HBase与一般的数据库又有所区别,HBase本身的存取接口相当简单,不支持复杂的数据存取,更不支
最近在逐步跟进Hbase的相关工作,由于之前对Hbase并不怎么了解,因此系统地学习了下Hbase,为了加深对Hbase的理解,对相关知识点做了笔记,并在组内进行了Hbase相关技术的分享,由于Hbase涵盖的内容比较多,因此计划分享2期,下面就是针对第一期Hbase技术分享整体而成,第一期的主要内容如下:
ansible是常用的运维工具,可大幅度简化整个部署过程,接下来会使用ansible来完成部署工作,如果您对ansible还不够了解,请参考《ansible2.4安装和体验》,部署操作如下图所示,在一台安装了ansible的电脑上运行脚本,由ansible远程连接到一台CentOS7.7的服务器上,完成部署工作:
LSMT,即Log-Structured Merge-Tree,这是一个经典的数据结构,在大数据系统中有着非常广泛的应用。很多耳熟能详的经典系统,底层就是基于LSMT实现的。早期的数据库系统一般都采用B-Tree家族作为索引,例如MySQL。2000年后诞生的数据库大多采用LSMT索引,例如Google BigTable,HBase等,是通过Append-only Write+择机ompact来维护结构的索引树。
Hadoop生态圈的技术繁多。HDFS一直用来保存底层数据,地位牢固。Hbase作为一款Nosql也是Hadoop生态圈的核心组件,它海量的存储能力,优秀的随机读写能力,能够处理一些HDFS不足的地方。Clickhouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS)。能够使用SQL查询实时生成分析数据报告。它同样拥有优秀的数据存储能力。
完全分布式 HBase 集群的运行依赖于 Zookeeper 和 Hadoop,在前一篇中已经详细介绍了他们的安装部署及运行,参见“基于 HBase & Phoenix 构建实时数仓(1)—— Hadoop HA 安装部署”。本篇继续介绍在相同主机环境下安装配置完全分布式 HBase 集群。
HBase, Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩、 实时读写的分布式开源 NoSQL 数据库,面向列存储。主要用来存储非结构化和半结构化的松散数据。
即按天分表,一天的数据存放于一张表中,rowkey 采用随机值,不需要有特定规律,尽可能的散列。
从2016年开始,美团到店餐饮技术团队就开始使用Apache Kylin作为OLAP引擎,但是随着业务的高速发展,在构建和查询层面都出现了效率问题。于是,技术团队从原理解读开始,然后对过程进行层层拆解,并制定了由点及面的实施路线。本文总结了一些经验和心得,希望能够帮助业界更多的技术团队提高数据的产出效率。
从《Disconf实现分布式配置管理的原理与设计》我们了解到,搭建部署我们自己的分布式disconf配置中心需要分布式应用程序协调服务Zookeeper的支持,下面我们就来部署我们的Zookeeper集群服务
Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。
从Impala在Kudu中创建新表类似于将现有Kudu表映射到Impala表,除了您需要自己指定模式和分区信息。 使用以下示例作为指导。Impala首先创建表,然后创建映射。
hive 查询hudi 数据主要是在hive中建立外部表数据路径指向hdfs 路径,同时hudi 重写了inputformat 和outpurtformat。因为hudi 在读的数据的时候会读元数据来决定我要加载那些parquet文件,而在写的时候会写入新的元数据信息到hdfs路径下。所以hive 要集成hudi 查询要把编译的jar 包放到HIVE-HOME/lib 下面。否则查询时找不到inputformat和outputformat的类。
Apache Kylin,作为一款开源的大数据分析平台,以其独特的预计算技术,为用户提供亚秒级的OLAP查询体验。无论是数据分析师还是大数据工程师,掌握Kylin的使用技巧,都将极大地提升数据洞察力和决策效率。本文将从Kylin的基本概念出发,深入解析其工作原理,分享我在使用过程中的常见问题及解决方案,同时附上实战代码示例,帮助你更有效地驾驭这一强大的分析工具。
1.从http://www.apache.org/dyn/closer.cgi/hbase/下载稳定版安装包,我下的是hbase-1.2.6-bin.tar.gz
领取专属 10元无门槛券
手把手带您无忧上云