HBase应用场景非常广泛;社区前面有一系列文章。大家可以到社区看看看;张少华同学本篇主要讲HBase的MOB压缩分区策略介绍,非常赞!大力推荐!
默认情况下,AutoFlush是开启的,当每次put操作的时候,都会提交到HBase server,大数据量put的时候会造成大量的网络IO,耗费性能
熟悉HBase的同学应该知道,HBase是基于一种LSM-Tree(Log-Structured Merge Tree)存储模型设计的,写入路径上是先写入WAL(Write-Ahead-Log)即预写日志,再写入memstore缓存,满足一定条件后执行flush操作将缓存数据刷写到磁盘,生成一个HFile数据文件。随着数据不断写入,磁盘HFile文件就会越来越多,文件太多会影响HBase查询性能,主要体现在查询数据的io次数增加。为了优化查询性能,HBase会合并小的HFile以减少文件数量,这种合并HFile的操作称为Compaction,这也是为什么要进行Compaction的原因。
之前的系列文章当中,已经为大家介绍了大数据存储当中的MongoDB、Redis等数据库,今天接着来讲Hbase。Hbase在大数据存储当中,与Hadoop生态紧密相关,也是Hadoop生态当中必学的重要组件。下面我们从基础入门开始,来讲讲Hbase。
环境如下: Centos6.5 Apache Hadoop2.7.1 Apache Hbase0.98.12 Apache Zookeeper3.4.6 JDK1.7 Ant1.9.5 Maven3.0.5 最近在测Hbase的压缩,Hadoop安装了lzo和snappy,插入50条文本数据,每条数据大约4M,来看他们的压缩率对比, 然后在测的过程中,发现用java客户端去scan这50条数据时,regionserver频繁宕机看hbase的log发现并无明显异常,查看datano
hbase表中的数据按照行键的字典顺序排序 hbase表中的数据按照行的的方向切分为多个region 最开始只有一个region 随着数据量的增加 产生分裂 这个过程不停的进行 一个表可能对应一个或多个region region是hbase表分布式存储和负载均衡的基本单元 一个表的多个region可能分布在多台HRegionServer上 region是分布式存储的基本单元 但不是存储的基本单元 内部还具有结构 一个region由多个Store来组成 有几个store取决于表的列族的数量 一个列族对应一个store 之所以这么设计 是因为 一个列族中的数据往往数据很类似 方便与进行压缩 节省存储空间 表的一个列族对应一个store store的数量由表中列族的数量来决定 一个store由一个memstore 和零个或多个storefile组成 storefile其实就是hdfs中的hfile 只能写入不能修改 所以hbase写入数据到hdfs的过程其实是不断追加hfile的过程
Hbase1.X版本中PREFIX_TREE作为BlockEncoding存在bug,会造成RegionServer节点compaction queue持续升高,甚至影响flush,最终阻塞写入。本文记录了整个RegionServer异常的故障定位过程。
转自:https://yq.aliyun.com/articles/213705?utm_content=m_31236 hbase中的宽表是指很多列较少行,即列多行少的表,一行中的数据量较大,行数
1,执行命令安装一些依赖组件 yum install -y hadoop-lzo lzo lzo-devel hadoop-lzo-native lzop 2, 下载lzo的源码包并解压 wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.09.tar.gz tar -zxvf lzo-2.09.tar.gz 3,在当前目录新建一个lzo目录,存储编译后的lzo文件 进入lzo-2.09目录 依次执行命令: expor
Sorted Strings Table(SSTable)是HBase、 Cassandra等一些NoSQL数据库使用的一种持久文件格式,用于获取存储在memtables中的内存数据,对其进行排序以实现快速访问,并将其存储在磁盘上的一组持久的、有序的、不可变的文件中。不可变意味着sstable永远不会被修改。它们稍后被合并到新的sstable中,或者在数据更新时被删除。
在大数据时代,列式存储变得越来越流行了,当然并不是说行式存储就没落了,只是针对的场景不同,行式存储的代表就是我们大多数时候经常用的数据库,比较适合数据量小,字段数目少,查询性能高的场景,列式存储主要针对大多数互联网公司中的业务字段数目多,数据量规模大,离线分析多的场景,这时候避免大量无用IO扫描,往往提高离线数据分析的性能,而且列式存储具有更高的压缩比,能够节省一定的磁盘IO和网络IO传输。 基础环境如下: Apache Hadoop2.7.1 Apache Hbase0.98.12 Apach
HBase 是一个基于 Google BigTable 论文设计的高可靠性、高性能、可伸缩的分布式存储系统。 网上关于 HBase 的文章很多,官方文档介绍的也比较详细,本篇文章不介绍 HBase 基本的细节。
3 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
HBASE原理 一、原理 1、物理存储 1.hregion hbase表中的数据按照行键的字典顺序排序,hbase表中的数据按照行的的方向切分为多个region。 最开始只有一个region随着数据量的增加,产生分裂,这个过程不停的进行。一个表可能对应一个或多个region。 region是hbase表分布式存储和负载均衡的基本单元,一个表的多个region可能分布在多台HRegionServer上。 2.Store region是分布式存储的基本单元,但不是存储的基本单元,
azkaban airflow dolphinscheduler oozie 自研
前段时间总结了一篇关于HBase由于分区过多导致集群宕机的文章,感兴趣的同学可以点击原文《HBase案例 | 20000个分区导致HBase集群宕机事故处理》阅读参考。本文重点参考HBase官网,从分区过多这个角度出发,进一步聊一聊HBase分区过多的影响以及单节点合理分区数量等。
** 一般操作: ----- ** hbase(main)> status hbase(main)> version 创建命名空间: namespace指的是一个 表的逻辑分组 ,同一组中的表有类似的用途,相当于关系型数据库中的database。 hbase(main):060:0> create_namespace 'test1' drop_namespace 创建该命名空间的表: hbase(main):061:0> create 'test1:test','f1','f2' crea
推荐序 Google公司提出的MapReduce编程框架、GFS文件系统和BigTable存储系统成为了大数据处理技术的开拓者和领导者,而源于这三项技术的ApacheHadoop等开源项目则成为了大数据处理技术的事实标准,迅速推广至国内外各大互联网企业,成为了PB量级大数据处理的成熟技术和系统。面对不同的应用需求,基于Hadoop的数据处理工具也应运而生 例如,Hive、Pig等已能够很好地解决大规模数据的离线式批量处理问题。但是,HadoopHDFS适合于存储非结构化数据,且受限于HadoopMapRed
摘要:第九届中国数据库技术大会,阿里巴巴技术专家孟庆义对阿里HBase的数据管道设施实践与演进进行了讲解。主要从数据导入场景、 HBase Bulkload功能、HImporter系统、数据导出场景、HExporter系统这些部分进行了讲述。
在 HBase 中,row key 可以是任意字符串,最大长度 64KB,实际应用中一般为 10~100bytes,存为 byte[]字节数组,一般设计成定长的。
在这篇博客文章中,我们主要深入看一下H Base 的体系结构以及在 NoSQL 数据存储解决方案主要优势。
也就是我们所谓的"客户端",Client作为访问数据的入口,包含访问hbase的API接口,维护着一些cache(高速缓存存储器)来加快hbase的访问。
链接:https://pan.baidu.com/s/1vc7i9JO87WiKUk_ce0J7KQ 提取码:rsgx
MemStore是HBase非常重要的组成部分,深入理解MemStore的运行机制、工作原理、相关配置,对HBase集群管理以及性能调优有非常重要的帮助。
我们对本次HBase成本优化项目进行深度复盘,并进一步尝试总结云数据库的FinOps之道。
HBase 是一个分布式的、面向列的开源数据库。建立在 HDFS 之上。Hbase的名字的来源是 Hadoop database,即 Hadoop 数据库。HBase 的计算和存储能力取决于 Hadoop 集群。
一、调优的目的 充分的利用机器的性能,更快的完成mr程序的计算任务。甚至是在有限的机器条件下,能够支持运行足够多的mr程序。 二、调优的总体概述 从mr程序的内部运行机制,我们可以了解到一个mr程序由mapper和reducer两个阶段组成,其中mapper阶段包括数据的读取、map处理以及写出操作(排序和合并/sort&merge),而reducer阶段包含mapper输出数据的获取、数据合并(sort&merge)、reduce处理以及写出操作。那么在这七个子阶段中,能够进行较大力度的进行调优的就
HBase在WAL机制开启的情况下,不考虑块缓存,数据日志会先写入HLog,然后进入Memstore,最后持久化到HFile中。HFile是存储在hdfs上的,WAL预写日志也是,但Memstore是在内存的,增加Memstore大小并不能有效提升写入速度,为什么还要将数据存入Memstore中呢?
HBase 提供了一个非常方便的命令行交互工具 HBase Shell。通过 HBase Shell 可以创建表,也可以增删查数据,同时集群的管理、状态查看等也可以通过 HBase shell 实现。
通过上述文章的介绍,我们了解到: HBase底层存储依赖于HDFS,HBase中table在行的方向上分割为多个region,它是HBase负载均衡的最小单元,可以分布在不同的RegionServer上,但是一个region不能拆分到多个RegionServer上。
本文集合了小编在日常学习和生产实践中遇到的使用Hbase中的各种问题和优化方法,分别从表设计、rowkey设计、内存、读写、配置等各个领域对Hbase常用的调优方式进行了总结,希望能对读者有帮助。本文参考结合自己实际优化经验,参考了大量官网和各个前辈的经验,调优后生产环境中的Hbase集群支撑了约50万/s的读和25万/s的写流量洪峰。感谢各位的经验和付出。
HBase的集群环境搭建 注意事项:HBase强依赖zookeeper和hadoop, 安装HBase之前一定要保证zookeeper和hadoop启动成功,且服务正常运行 第一步:下载对应的HBase的安装包 所有关于CDH版本的软件包下载地址如下 http://archive.cloudera.com/cdh5/cdh/5/ HBase对应的版本下载地址如下 http://archive.cloudera.com/cdh5/cdh/5/hbase-1.2.0-cdh5.14.0.tar.gz 第二步
最近朋友公司在做一些数据的迁移,主要是将一些Hive处理之后的热数据导入到HBase中,但是遇到了一个很奇怪的问题:同样的数据到了HBase中,所占空间竟增长了好几倍!详谈中,笔者建议朋友至少从几点原因入手分析:
1 包含访问hbase的接口,client维护着一些cache来加快对hbase的访问,比如regione的位置信息。
(1) Hbase一个分布式的基于列式存储的数据库,基于Hadoop的hdfs存储,zookeeper进行管理。
设置环境变量export HBASE_HOME = /usr/local/hbase
作者 | 贾驰千、余智平 酷家乐中间件团队研发工程师 随着云数据库数量以及成本的迅速增加,数据库成本管理和优化成为了企业所关注的方向。酷家乐针对云数据库做了一系列的深度成本优化动作,收益颇丰。本文为详细介绍~ 供你参考。 一、背景摘要 近年来,随着上云的普遍化,降本成为了备受关注的热门话题。越来越多的企业开始重视云资源的成本优化,FinOps更是横空出世,得到了众多企业的拥抱。 作为全球领先的云设计软件平台和 SaaS 服务提供商,(群核科技)酷家乐的产品都构建在公有云之上,截止目前,我们使用了上
Hbase Rowkey CF 架构 概述 预分区及Rowkey设计 学习笔记介绍了Region类似于数据库的分片和分区的概念,每个Region负责一小部分Rowkey范围的数据的读写和维护,Region包含了对应的起始行到结束行的所有信息。master将对应的region分配给不同的RergionServer,由RegionSever来提供Region的读写服务和相关的管理工作。
Hadoop离线数据分析平台实战——380MapReduce程序优化 项目进度 模块名称 完成情况 用户基本信息分析(MR)� 完成 浏览器信息分析(MR) 完成 地域信息分析(MR) 完成 外链信息分析(MR) 完成 用户浏览深度分析(Hive) 未完成 订单分析(Hive) 未完成 事件分析(Hive) 未完成 调优的目的 充分的利用机器的性能,更快的完成mr程序的计算任务。 甚至是在有限的机器条件下,能够支持运行足够多的mr程序。 说的直接一点就是:调优
•MapReduce写入Hbase原理:封装了一个TableOutputFormat来实现写入Hbase的数据 •要求 –写入Hbase的数据的V的类型必须为Put类型
Apache HBase 是基于 Hadoop 构建的一个分布式的、可伸缩的海量数据存储系统。常被用来存放一些海量的(通常在TB级别以上)、结构比较简单的数据,如历史订单记录,日志数据,监控 Metrics 数据等等,HBase 提供了简单的基于 Key 值的快速查询能力。
在开始之前,有一个注意事项:HBase强依赖zookeeper和hadoop,安装HBase之前一定要保证zookeeper和hadoop启动成功,且服务正常运行。
hbase是bigtable的开源山寨版本。是建立的hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统。 它介于nosql和RDBMS之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。主要用来存储非结构化和半结构化的松散数据。 与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。 HBase中的表一般有这样的特点: 1 大:一个表可以有上亿行,上百万列 2 面向列:面向列(族)的存储和权限控制,列(族)独立检索。 3 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。 二、逻辑视图
http://mirror.bit.edu.cn/apache/hbase/2.2.6/
hbase是一个KeyValue型的数据库,在《hbase实战》描述它的逻辑模型【行键,列族,列限定符,时间版本】,物理模型是基于列族的。但实际情况是啥?还是上点代码吧。 HTableDescriptor tableDesc = new HTableDescriptor("test"); //日志flush的时候是同步写,还是异步写 tableDesc.setDurability(Durability.SYNC_WAL); //MemStore大
HBase 是Hadoop生态里重要一员。对HBase的调优,对节约成本,提升用户体验有重要意义。
OpenTSDB(Open time series data base),开发时间序列数据库。DB这个词很有误导性,其实并不是一个db,单独一个OpenTSDB无法存储任何数据,它只是一层数据读写的服务,更准确的说它只是建立在Hbase上的一层数据读写服务。行业内各种db都很多了,为什么还会出现它?它到底有什么好?它做了什么?别着急,我们来一一分析下。 其实OpenTSDB不是一个通用的数据存储服务,看名字就知道,它主要针对于时序数据。什么是时序数据,股票的变化趋势、温度的变化趋势、系统某个指标的变化趋势……其实都是时序数据,就是每个时间点上纪录一条数据。 关于数据的存储,我们最熟悉的就是mysql了,但是想想看,每5分钟存储一个点,一天288个点,一年就10万+,这还是单个维度,往往在实际应用中维度会非常多,比如股票交易所,成千上万支股票,每天所有股票数据就可能超过百万条,如果还得支持历史数据查询,mysql是远远扛不住的,必然要考虑分布式存储,最好的选择就是Hbase了,事实上业内基本上也是这么做的。(我对其他分布式存储不了解,就不对比了)。 了解Hbase的人都知道,它可以通过加机器的水平扩展迅速增加读写能力,非常适合存储海量的数据,但是它并不是关系数据库,无法进行类似mysql那种select、join等操作。 取而代之的只有非常简单的Get和Scan两种数据查询方式。这里不讨论Hbase的相关细节,总之,你可以通过Get获取到hbase里的一行数据,通过Scan来查询其中RowKey在某个范围里的一批数据。如此简单的查询方式虽然让hbase变得简单易用, 但也限制了它的使用场景。针对时序数据,只有get和scan远远满足不了你的需求。 这个时候OpenTSDB就应运而生。 首先它做了数据存储的优化,可以大幅度提升数据查询的效率和减少存储空间的使用。其次它基于hbase做了常用时序数据查询的API,比如数据的聚合、过滤等。另外它也针对数据热度倾斜做了优化。接下来挨个说下它分别是怎么做的。
我们在使用HBase的时候,必须要能够清楚HBase服务端的性能,这对HBase的合理使用以及性能调优都非常重要,所以一般在使用HBase之前,建议做一些必要的基准性能测试,其中,读写P99/P999延时就是一项衡量HBase性能的关键指标。本文首先介绍下HBase自带的性能测试工具——PerformanceEvaluation的使用,然后通过它压测下HBase读写路径P999延时情况。
领取专属 10元无门槛券
手把手带您无忧上云