首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

get DefaultPeopleDetector()支持向量机使用什么数据集进行训练?

get DefaultPeopleDetector()支持向量机是OpenCV库中的一个函数,用于人体检测。它使用了一个经过训练的支持向量机(SVM)模型来进行人体检测。

支持向量机是一种监督学习算法,用于二分类和多分类问题。在人体检测中,支持向量机被用来将图像中的人体区域与其他区域进行区分。为了训练这个模型,需要使用一个包含正样本(人体区域)和负样本(非人体区域)的数据集。

具体来说,get DefaultPeopleDetector()支持向量机使用了一个名为INRIA Person数据集进行训练。INRIA Person数据集是一个广泛使用的人体检测数据集,包含了大量的正样本和负样本。这个数据集由INRIA计算机视觉研究所提供,用于训练和评估人体检测算法。

推荐的腾讯云相关产品和产品介绍链接地址:

请注意,以上答案仅供参考,具体的训练数据集和腾讯云产品选择可能需要根据实际情况进行调整。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

机器学习三人行(系列七)----支持向量机实践指南(附代码)

其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是从感知机发展而来,支持向量机是一个非常强大而且应用面很广的机器学习算法,能够胜任线性分类器,非线性分类器,线性回归问题,非线性回归问题中,甚至是离群值检测中,是应用最广泛的机器学习算法之一,本文剖析支持向量机在实践中的应用。 一、线性支持向量机 我们以一些图来解释支持向量机的基本原理,下图是对鸢尾花数据集分类,可以发现两种花能够很轻松的通过直线划分出来,因为该数据集是线性可分的,左图是三种可能的分类方式,虚线基本没有办法将两种类别划分,另外

012
  • 机器学习三人行-支持向量机实践指南

    关注公众号“智能算法”即可一起学习整个系列的文章。 文末查看本文代码关键字,公众号回复关键字下载代码。 其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是从感知机发展而来,支持向量机是一个非常强大而且应用面很广的机器学习算法,能够胜任线性分类器,非线性分类器,线性回归问题,非线性回归问题中,甚至是离群值检测中,是应用最广泛的机器学习算法之一,本文剖析支持向量机在实践中的应用。 一、线性支持向量机 我们以一些图来解释支持向量机的基本原理,下图是对鸢尾花数据集分类,可以发现两种花能够很轻松的通过直线划分出

    09

    支持向量机1--线性SVM用于分类原理

    在机器学习中,支持向量机(SVM,也叫支持向量网络),是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。是由Vapnik与同事(Boser等,1992;Guyon等,1993;Vapnik等,1997)在AT&T贝尔实验室开发。支持向量机是基于统计学习框架与由Chervonenkis(1974)和Vapnik(1982,1995)提出Vapnik–Chervonenkis理论上的最强大的预测方法之一。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

    04

    基于支持向量机的手写数字识别详解(MATLAB GUI代码,提供手写板)

    摘要:本文详细介绍如何利用MATLAB实现手写数字的识别,其中特征提取过程采用方向梯度直方图(HOG)特征,分类过程采用性能优异的支持向量机(SVM)算法,训练测试数据集为学术及工程上常用的MNIST手写数字数据集,博主为SVM设置了合适的核函数,最终的测试准确率达99%的较高水平。根据训练得到的模型,利用MATLAB GUI工具设计了可以手写输入或读取图片进行识别的系统界面,同时可视化图片处理过程及识别结果。本套代码集成了众多机器学习的基础技术,适用性极强(用户可修改图片文件夹实现自定义数据集训练),相信会是一个非常好的学习Demo。本博文目录如下:

    05

    文本分类算法研究与实现

    近年来,随着Internet的迅猛发展,网络信息和数据信息不断扩展,如何有效利用这一丰富的数据信息,己成为广大信息技术工作者所关注的焦点之一。为了快速、准确的从大量的数据信息中找出用户所需要的信息,文本信息的自动分析也成为了当前的迫切需求。对文本信息的分析中的一个主要技术就是文本分类。文本分类问题是自然语言处理的一个基本问题,很多相关的研究都可以归结为分类问题。文本分类是指将文本按一定的规则归于一个或多个类别中的技术。近年来,许多统计的方法和机器学习的方法都应用到文本分类方面,如朴素贝叶斯方法(NB)、K-近邻方法(KNN)、支持向量机方法(SVM)等。

    00

    机器学习做中文邮件内容分类,准确识别垃圾邮件,真香!

    作者 | Yunlord     出品 | CSDN博客前言 随着微信的迅速发展,工作和生活中的交流也更多依赖于此,但是由于邮件的正式性和规范性,其仍然不可被取代。但是不管是企业内部工作邮箱,还是个人邮箱,总是收到各种各样的垃圾邮件,包括商家的广告、打折促销信息、澳门博彩邮件、理财推广信息等等,不管如何进行垃圾邮件分类,总有漏网之鱼。最重要的是,不同用户对于垃圾邮件的定义并不一致。而且大部分用户网络安全意识比较一般,万一误点垃圾邮件上钩,或者因为垃圾邮件淹没了工作中的关键信件,则会给个人或者企业造成损失。垃

    02

    SVM在脑影像数据中的应用

    如第一章所述,机器学习中有四种基本方法:有监督学习、无监督学习、半监督学习和强化学习。分类是监督学习的一种形式,它根据训练阶段确定的许多输入输出对将输入数据映射到输出数据。使用分类,与一组示例观察相关的特征可以用来训练一个决策函数,该函数以给定的精度生成类别赋值(即标签labels)。从功能性神经成像数据到推特帖子,这些特征可以是多种多样的。一旦基于这些特征创建了决策函数分类器,它就可以使用之前建立的模式自动将类标签附加到新的、不可见的观察结果上。有许多类型的机器学习算法可以执行分类,如决策树,朴素贝叶斯和深度学习网络。本章回顾支持向量机(SVM)学习算法。支持向量机的强大之处在于它能够以平衡的准确性和再现性学习数据分类模式。虽然偶尔用于回归(见第7章),SVM已成为一种广泛使用的分类工具,具有高度的通用性,扩展到多个数据科学场景,包括大脑疾病研究。

    04
    领券