在Java api中,使用flink本地模式,消费kafka主题,并直接将数据存入hdfs中。
day09_综合案例 今日目标 Flink FileSink 落地写入到 HDFS FlinkSQL 整合 Hive数据仓库 订单自动好评综合案例 Flink FileSink 落地写入到 HDFS FlinkSQL 整合 Hive Flink实现订单自动好评 问题 Streaming File sink 落地到 HDFS 上, 无法正常写入到 HDFS 导入依赖,确定是否有问题 确定 hdfs 服务启动 (); } } //在生产环境下,可以去查询相关的订单系统. //模拟给 orderI
随着 Flink 实例的迁移下云以及新增需求接入,自建 Flink 平台规模逐渐壮大,当前总计已超 4 万核运行在自建的 K8S 集群中,然而 Flink 任务数的增加,特别是大状态任务,每次 Checkpoint 时会产生脉冲式带宽占用,峰值流量超过 100Gb/s,早期使用 OSS 作为 Checkpoint 数据存储,单个 Bucket 每 1P 数据量只有免费带宽 10Gb/s,超出部分单独计费,当前规模每月需要增加 1x w+/月。
翻阅Flink的PR,十几天前,阿里Flink的开发同学已经注意到了这个问题,我们将之吸收到测试环境,编译替换lib下jar包,重新测试,性能确实up了,单并发升至5W每秒,上游节点才稍微有背压。 [FLINK-19121][hive] Avoid accessing HDFS frequently in HiveBulkWriterFactory
根据目前大数据这一块的发展,已经不局限于离线的分析,挖掘数据潜在的价值,数据的时效性最近几年变得刚需,实时处理的框架有storm,spark-streaming,flink等。想要做到实时数据这个方案可行,需要考虑以下几点:1、状态机制 2、精确一次语义 3、高吞吐量 4、可弹性伸缩的应用 5、容错机制,刚好这几点,flink都完美的实现了,并且支持flink sql高级API,减少了开发成本,可用实现快速迭代,易维护等优点。
由于容器化易管理、易扩容等优点,越来越多的组件都开始迁移到容器上,k8s作为容器化的事实标准,受到了越来越多的人的青睐,由于我们目前很多web开发的组件也是部署到k8s上的,为了后续运维更加方便,我把我们用到的一些大数据组件都迁移到了k8s,包括hive、trino、flink、clickhouse等等。
在具体的实施中,基于华为MRS 3.2.0安全模式带kerberos认证的Kafka2.4、Flink1.15、Hadoop3.3.1、Hive3.1,调度平台为开源dolphinscheduler。
之前的文章有介绍过怎么在Kubernetes上快速搭建大数据基础环境,这里就不重复介绍了。安装完后,可以看到如下图各个基础服务都启动完成。
HDFS(Hadoop Distributed File System)的读写流程如下:
Apache Iceberg is an open table format for huge analytic datasets. Iceberg adds tables to Presto and Spark that use a high-performance format that works just like a SQL table.
Flink读parquet import org.apache.flink.core.fs.Path import org.apache.flink.formats.parquet.ParquetRowInputFormat import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.api.scala._ import org.apache.flink.ty
我们可以看到控制台上有对应实时数据输出,查看对应的Icberg HDFS目录,数据写入成功。
Flink从1.13版本开始支持在SQL Client从savepoint恢复作业。flink-savepoint介绍
在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(Operational Data Store)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。如何准确、高效地把MySQL数据同步到Hive中?一般常用的解决方案是批量取数并Load:直连MySQL去Select表中的数据,然后存到本地文件作为中间存储,最后把文件Load到Hive表中。这种方案的优点是实现简单,但是随着业务的发展,缺点也逐渐暴露出来:
目前基于ELK架构的日志系统,通过filebeat收集上来的日志都会发送到同一个kafka topic中,然后再由Logstash消费处理写入Elasticsearch中,这种方式导致该topic包含所有业务日志,那么各个业务去做实时统计分析就会造成重复消费,使得流量成本的浪费;对于离线分析的日志来源是通过在应用服务端定时上传的方式,对于日志量比较大的业务,一方面上传时会对应用服务器造成比较大的压力,另一方面这种上传方式对于后续小时或者分钟级别分析造成一定延时。
•Flink 1.12.2_2.11•Hudi 0.9.0-SNAPSHOT(master分支)•Spark 2.4.5、Hadoop 3.1.3、Hive 3.1.2
Flink 通过 org.apache.flink.core.fs.FileSystem 类有自己的文件系统抽象。 这种抽象提供了一组通用的操作和跨各种类型的文件系统实现的最小保证。
本文基于上述组件版本使用flink插入数据到hudi数据湖中。为了确保以下各步骤能够成功完成,请确保hadoop集群正常启动。
状态可以存储在Java的堆内或堆外。根据你的状态终端,Flink 也可以管理应用程序的状态,这意味着 Flink 可以处理内存管理(可能会溢出到磁盘,如果有必要),以允许应用程序存储非常大的状态。默认情况下,配置文件 flink-conf.yaml 为所有Flink作业决定其状态终端。
其中flink-connector-filesystem_2.11是将Hadoop作为Flink的BucketingSink接入,
目前Flink支持使用DataStream API 和SQL API 方式实时读取和写入Iceberg表,建议大家使用SQL API 方式实时读取和写入Iceberg表。
本文使用datafaker工具生成数据发送到MySQL,通过flink cdc工具将mysql binlog数据发送到kafka,最后再从kafka中读取数据并写入到hudi中。
Flink SQL 在操作Iceberg时,对应的版本为Flink 1.11.x 与Iceberg0.11.1版本,目前,Flink1.14.2版本与Iceberg0.12.1版本对于SQL API 来说兼容有问题,所以这里使用Flink1.11.6版本与Iceberg0.11.1版本来演示Flink SQL API 操作Iceberg。
一般指一个具体的Operator的状态(operator的状态表示一些算子在运行的过程中会产生的一些历史结果,如前面的maxBy底层会维护当前的最大值,也就是会维护一个keyedOperator,这个State里面存放就是maxBy这个Operator中的最大值)
导读:本文来自用户投稿,介绍了 Dinky 如何通过 SavePoint 来恢复 FlinkSQL 作业。
面试题总结是一个长期工作,面试不停,这份面试题总结就不会停。以后会慢慢把Java相关的面试题、计算机网络等都加进来,其实这不仅仅是一份面试题,更是一份面试参考,让你熟悉面试题各种提问情况,当然,项目部分,就只能看自己了,毕竟每个人简历、实习、项目等都不一样。
原文地址:https://dzone.com/articles/getting-started-with-batch-processing-using-apache
批处理非常适合需要访问全套记录才能完成的计算工作。例如在计算总数和平均数时,必须将数据集作为一个整体加以处理,而不能将其视作多条记录的集合。这些操作要求在计算进行过程中数据维持自己的状态。
最初,BIGO 的消息流平台主要采用开源 Kafka 作为数据支撑。随着数据规模日益增长,产品不断迭代,BIGO 消息流平台承载的数据规模出现了成倍增长,下游的在线模型训练、在线推荐、实时数据分析、实时数仓等业务对消息流平台的实时性和稳定性提出了更高的要求。开源的 Kafka 集群难以支撑海量数据处理场景,我们需要投入更多的人力去维护多个 Kafka 集群,这样成本会越来越高,主要体现在以下几个方面:
传统意义上我们通常将数据处理分为离线数据处理和实时数据处理。对于实时处理场景,我们一般又可以分为两类,一类诸如监控报警类、大屏展示类场景要求秒级甚至毫秒级;另一类诸如大部分实时报表的需求通常没有非常高的时效性要求,一般分钟级别,比如10分钟甚至30分钟以内都可以接受。
场景描述:当Flink程序的checkpoint被激活时,状态会被持久化到checkpoint,以防止数据丢失和无缝恢复。状态在内部如何组织和它们如何以及在哪持久化,依赖于所选的状态后端。
我们前面写的word count的例子,没有包含状态管理。如果一个task在处理过程中挂掉了,那么它在内存中的状态都会丢失,所有的数据都需要重新计算。从容错和消息处理的语义上(at least once, exactly once),Flink引入了state和checkpoint。
本篇文章主要介绍Apache Hudi在医疗大数据中的应用,主要分为5个部分进行介绍:1. 建设背景,2. 为什么选择Hudi,3. Hudi数据同步,4. 存储类型选择及查询优化,5. 未来发展与思考。
Checkpoint 的存储的位置取决于配置的 State backend(JobManager 内存,文件系统,数据库...)。
数栈是云原生—站式数据中台PaaS,我们在github和gitee上有一个有趣的开源项目:FlinkX,FlinkX是一个基于Flink的批流统一的数据同步工具,既可以采集静态的数据,也可以采集实时变化的数据,是全域、异构、批流一体的数据同步引擎。大家喜欢的话请给我们点个star!star!star!
作者简介:诸葛子房,目前就职于一线互联网公司,从事大数据相关工作,了解互联网、大数据相关内容,一直在学习的路上。
Oceanus兼容原生的Flink 框架,基于Flink开发的Connector能够实现100%兼容。
对于一个实时数据产品人员、或者开发人员来说,产品上展示的实时数据,pv、uv、gmv等等,怎么知道这些数据是不是正确的呢?当其他的小组开发的产品的数据(或者其他的数据提供方)又是另外一个数字,那么究竟该如何判断自己的数据还是别人的数据是正确的呢?这就需要一套实时数据对数方案,本文主要从背景、实时数据计算方案、对数方案、总结四方面来介绍,说服老板或者让其他人相信自己的数据是准确的、无误的。
随着大数据处理结果的实时性要求越来越高,越来越多的大数据处理从离线转到了实时,其中以flink为主的实时计算在大数据处理中占有重要地位。
Hadoop是目前应用最为广泛的分布式大数据处理框架,其具备可靠、高效、可伸缩等特点。
表4-1展示了用户常住省标签的Hive表结构及数据示例,其中p_date表示标签的数据日期,user_id代表的用户实体ID,province代表用户的常住省。大部分标签与省份标签一样存储在Hive表中,其属性包括用户实体ID、标签信息以及标签时间信息。
对于一个实时数据产品人员、或者开发人员来说,产品上展示的实时数据,pv、uv、gmv等等,怎么知道这些数据是不是正确的呢?当其他的小组开发的产品的数据(或者其他的数据提供方)又是另外一个数字,那么究竟该如何判断自己的数据还是别人的数据是正确的呢?
Flink目前对于外部Exactly-Once写支持提供了两种的sink,一个是Kafka-Sink,另一个是Hdfs-Sink,这两种sink实现的Exactly-Once都是基于Flink checkpoint提供的hook来实现的两阶段提交模式来保证的,主要应用在实时数仓、topic拆分、基于小时分析处理等场景下。本篇将会介绍StreamingFileSink的基本用法、如何压缩数据以及合并产生的小文件。
场景描述:本文将介绍如何使用 Flink 开发实时 ETL 程序,并介绍 Flink 是如何保证其 Exactly-once 语义的。
作者 | 陈航 BIGO 于 2014 年成立,是一家高速发展的科技公司。基于强大的音视频处理技术、全球音视频实时传输技术、人工智能技术、CDN 技术,BIGO 推出了一系列音视频类社交及内容产品,包括 Bigo Live(直播)和 Likee(短视频)等,在全球已拥有近 1 亿用户,产品及服务已覆盖超过 150 个国家和地区。 1挑战 最初,BIGO 的消息流平台主要采用开源 Kafka 作为数据支撑。随着数据规模日益增长,产品不断迭代,BIGO 消息流平台承载的数据规模出现了成倍增长,下游的在线模型训练
作者在实际工作中调研了Iceberg的一些优缺点和在各大厂的应用,总结在下面。希望能给大家带来一些启示。
n先部署一台机器,制作镜像,然后通过这个镜像去创建其他的EC2实例,最后完成配置与启动。
### 本地代码flink streaming读取远程环境的kafka的数据,写入远程环境的HDFS中; public static void main(String[] args) throws Exception { // set up the streaming execution environment final StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEn
领取专属 10元无门槛券
手把手带您无忧上云