首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

f1(n) / f2(n)的时间复杂度

f1(n) / f2(n)的时间复杂度是根据具体的函数f1(n)和f2(n)来确定的。时间复杂度是衡量算法执行时间随输入规模增长的增长率。

在给出具体答案之前,我们先了解一下时间复杂度的表示方法。常见的时间复杂度表示方法有大O表示法,表示为O(f(n)),其中f(n)是一个函数,表示算法执行时间与输入规模n的关系。

对于f1(n) / f2(n),我们需要分别考虑f1(n)和f2(n)的时间复杂度。

如果f1(n)和f2(n)的时间复杂度分别为O(g1(n))和O(g2(n)),那么f1(n) / f2(n)的时间复杂度可以表示为O(g1(n) / g2(n))。

具体来说,如果g2(n)是一个常数,那么f1(n) / f2(n)的时间复杂度为O(g1(n))。

如果g2(n)的增长速度比g1(n)快,那么f1(n) / f2(n)的时间复杂度为O(1)。

如果g2(n)的增长速度与g1(n)相同,那么f1(n) / f2(n)的时间复杂度为O(n^0)。

如果g2(n)的增长速度比g1(n)慢,那么f1(n) / f2(n)的时间复杂度为O(g1(n) / g2(n))。

需要注意的是,以上的分析是在假设f1(n)和f2(n)的计算时间是独立的情况下进行的。如果f1(n)和f2(n)之间存在依赖关系,那么需要考虑这种依赖关系对时间复杂度的影响。

总结起来,f1(n) / f2(n)的时间复杂度取决于f1(n)和f2(n)的时间复杂度的关系。具体的时间复杂度需要根据具体的函数来确定。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

常见算法时间复杂度 Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…

虽然我不懂算法,但是我知道关于算法时间复杂度。比如:Ο(1)、Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)、Ο(n3)…Ο(2n)、Ο(n!)等所代表意思!...我在面试时候,就发现有人连 O(1) 代表什么意思都搞不清楚! 关于时间复杂度,有一个公式:T (n) = Ο(f (n))。怎么解释这个公式呢?特别麻烦,我目前还没有想到比较简单介绍方式。...相关算法举例:哈希算法(不考虑冲突情况),无论在数据量多么大,都是 O(1)。 ? O(n) O(n) 理解起来也很简单,就是算法时间复杂度随着数据量增大几倍,耗时也增大几倍。...常见算法举例:遍历算法。 ? O(n^2) 就代表数据量增大 n 倍时,耗时增大 n 平方倍,这是比线性更高时间复杂度。...常见算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)。 ? 上图是常见算法时间复杂度举例。

8.3K21

时间复杂度O(n)和空间复杂度

算法对于敲代码应该都听过,不管是复杂还是简单,衡量算法效率两个重要指标就是时间复杂度和空间复杂度时间复杂度:评估执行程序所需时间。可以估算出程序对处理器使用程度。...,所以时间复杂度是O(n)。...(i + j); // 语句执行n*m次 }} 同样,这边执行次数是n*m,用数学方式n和m趋于无穷大时候,n≈m,于是执行次数就是n^2,所以时间复杂度是O(n^2)。...当然还有n三次方、四次方等。 算法还有很多很多时间复杂度,你要是数学学得好,你就可以找出更多时间复杂度,本人要是高中时候还能多找几个,现在只能理解这几个了。...而时间复杂度也是能比较,单以这几个而言: O(1)<O(logn)<O(n)<O(n²)<O(n³) 一个算法执行所消耗时间理论上是不能算出来,我们可以在程序中测试获得。

76910
  • 求mn次方(优化时间复杂度

    卷哥心想这问什么问题,过流程吗? 面试官眉头紧皱: 看面试官意思是对卷哥解法时间复杂度不太满意,卷哥想了15分钟没想出来; 卷哥:卒 题解 正常循环求mn次方,时间复杂度为O(n)。...如果为奇数n时间复杂度为O(n/2-1),偶数n就是O(n/2) 代码如下: public int process(int m,int n){ int index = n/2,...= 0){ result *= m; } return result; } 那还有没有时间复杂度更低算法?...上面我们是固定两个值缩减,效率固定了就是O(n/2),我们再分析一下:求平方m值是固定,那我们能不能不固定两个值缩减,反正值固定,每一次平方后n/2这样对数算法效率就很快了。...} 步骤图: 最后r x base = 19683就等同我们上图余出来一个单个m值需要与结果值进行平方 这种方式时间复杂度为O(logn),相对时间复杂度更低。

    84340

    c++ 字典顺序生成全排列,蛮力算法时间复杂度 Θ(n*n!)

    中大于  最小数,也就是指向 4 红色箭头所属位置,然后两个数交换位置       ③ 以从左到右递增形式对  进行排序 ,最终结果为  visual Studio程序直接复制即可运行!...位置 也就是指向 2 红色箭头所属位置           循环继续,一直运行到循环停止条件       ③.2  期间遍历每个排列中从右到左相邻两元素,不满足第一个 “ 信号由(无或弱)到强突然转弱...    {         /*遍历到最大排列时候结束*/         while (list[j] < list[j + 1]) // n!...    {         /*遍历到最大排列时候结束*/         while (list[j] < list[j + 1]) // n!...*Θ(n) 比较次数             j = n - 1;         }         /*遍历到最小排列时候结束*/         while (arr[j] > arr[

    85620

    究竟为什么,快速排序时间复杂度n*lg(n)? | 经典面试题

    ,swap时间复杂度是O(1)。...规则三:“树高度”时间复杂度往往是O(lg(n))。 分析:树总节点个数是n,则树高度是lg(n)。 在一棵包含n个元素二分查找树上进行二分查找,其时间复杂度是O(lg(n))。...对一个包含n个元素堆顶元素弹出后,调整成一个新堆,其时间复杂度也是O(lg(n))。 第二大类:组合规则 通过简单规则时间复杂度,来求解组合规则时间复杂度。 例如:n个数冒泡排序。...案例一:计算 1到n和,时间复杂度分析。...总结 for循环时间复杂度往往是O(n) 树高度时间复杂度往往是O(lg(n)) 二分查找时间复杂度是O(lg(n)),快速排序时间复杂度n*(lg(n)) 递归求解,未来再问时间复杂度,通杀

    1.5K30

    O(n)时间排序

    题目:某公司有几万名员工,请完成一个时间复杂度为O(n)算法对该公司员工年龄作排序,可使用O(1)辅助空间。      题目特别强调是对一个公司员工年龄作排序。...员工数目虽然有几万人,但这几万员工年龄却只有几十种可能。上班早的人一般也要等到将近二十岁才上班,一般人再晚到了六七十岁也不得不退休。...举个简单例子,假设总共有5个员工,他们年龄分别是25、24、26、24、25。我们统计出他们年龄,24岁有两个,25岁也有两个,26岁一个。...那么我们根据年龄排序结果就是:24、24、25、25、26,即在表示年龄数组里写出两个24、两个25和一个26。...该方法用长度100整数数组辅助空间换来了O(n)时间效率。由于不管对多少人年龄作排序,辅助数组长度是固定100个整数,因此它空间复杂度是个常数,即O(1)。

    79780

    时间复杂度o(1), o(n), o(logn), o(nlogn)

    1、时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度时候有说o(1), o(n), o(logn), o(nlogn),这是算法时空复杂度表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度。O后面的括号中有一个函数,指明某个算法耗时/耗空间与数据增长量之间关系。其中n代表输入数据量。 2、时间复杂度为O(1)。...哈希算法就是典型O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话) 3、时间复杂度为O(n)。 就代表数据量增大几倍,耗时也增大几倍。 比如常见遍历算法。...再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n平方倍,这是比线性更高时间复杂度。 比如冒泡排序,就是典型O(n^2)算法,对n个数排序,需要扫描n×n次。...4、时间复杂度为O(logn)。 当数据增大n倍时,耗时增大logn倍(这里log是以2为底,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低时间复杂度)。

    1.4K10

    时间复杂度log(n)底数到底是多少?

    其实这里底数对于研究程序运行效率不重要,写代码时要考虑是数据规模n对程序运行效率影响,常数部分则忽略,同样,如果不同时间复杂度倍数关系为常数,那也可以近似认为两者为同一量级时间复杂度...假设有底数为2和3两个对数函数,如上图。当X取N(数据规模)时,求所对应时间复杂度得比值,即对数函数对应y值,用来衡量对数底数对时间复杂度影响。...用文字表述:算法时间复杂度为log(n)时,不同底数对应时间复杂度倍数关系为常数,不会随着底数不同而不同,因此可以将不同底数对数函数所代表时间复杂度,当作是同一类复杂度处理,即抽象成一类问题。...排序算法中有一个叫做“归并排序”或者“合并排序”算法,它用到就是分而治之思想,而它时间复杂度就是N*logN,此算法采用是二分法,所以可以认为对应对数函数底数为2,也有可能是三分法,底数为3...说明:为了便于说明,本文时间复杂度一概省略 O 符号。

    2.8K50

    又一个,时间复杂度为O(n)排序!

    桶排序(Bucket Sort),是一种时间复杂度为O(n)排序。 画外音:百度“桶排序”,很多文章是错误,本文内容与《算法导论》中桶排序保持一致。...桶排序需要两个辅助空间: (1)第一个辅助空间,是桶空间B; (2)第二个辅助空间,是桶内元素链表空间; 总的来说,空间复杂度是O(n)。...1)桶X内所有元素,是一直有序; (2)插入排序是稳定,因此桶内元素顺序也是稳定; 当arr[N]中所有元素,都按照上述步骤放入对应桶后,就完成了全量排序。...桶排序伪代码是: bucket_sort(A[N]){ for i =1 to n{ 将A[i]放入对应桶B[X]; 使用插入排序,将A[i]插入到...桶排序(Bucket Sort),总结: (1)桶排序,是一种复杂度为O(n)排序; (2)桶排序,是一种稳定排序; (3)桶排序,适用于数据均匀分布在一个区间内场景; 希望这一分钟,大家有收获。

    1K30

    回溯法求解N皇后问题及其时间复杂度分析

    回溯法求解N皇后问题及其时间复杂度分析 一、回溯法简介 1. 什么是回溯法? 2. 回溯法时间复杂度分析 蒙特卡罗方法 蒙特卡罗方法在回溯法求解时间复杂度应用 二、回溯法求解N皇后问题 1....回溯法求解N皇后问题过程 2. 回溯法求解N皇后问题时间复杂度 2.1 求解时效率分析 回溯法进行效率分析代码 2.2 时间复杂度分析 一、回溯法简介 1. 什么是回溯法?   ...这样,每一个位置判断是否可以摆放,只需要O(1)时间复杂度,而非前者O(n)时间复杂度(以下计算时间复杂度时,均采用是后者求解方式)。 2....回溯法求解N皇后问题时间复杂度   根据前面所讲到蒙特卡罗方法,此时可以将其用于求解N皇后时间复杂度。对于n元组长度问题实例,其状态空间树中节点数目常见n!...所以N皇后时间复杂度为O(n×实际生成节点数)。

    2.4K20

    Python-排序-有哪些时间复杂度为O(n)排序算法?

    前几篇文章介绍了几个常用排序算法:冒泡、选择、插入、归并、快速,他们时间复杂度从 O(n^2) 到 O(nlogn),其实还有时间复杂度为 O(n) 排序算法,他们分别是桶排序,计数排序,基数排序...这个问题非常好,原因是这样,当桶个数 m 接近与 n 时,log(n/m) 就是一个非常小常数,在时间复杂度时常数是可以忽略。...比如极端情况下桶个数和元素个数相等,即 n = m, 此时时间复杂度就可以认为是 O(n)。...根据每一位来排序,我们利用上述桶排序或者计数排序,它们时间复杂度可以做到 O(n)。如果要排序数据有 k 位,那我们就需要 k 次桶排序或者计数排序,总时间复杂度是 O(k*n)。...O(n),因此使用基数排序对类似这样数据排序时间复杂度也为 O(n)。

    1.5K20

    去掉 Attention Softmax,复杂度降为 O (n)

    众所周知,尽管基于 Attention 机制 Transformer 类模型有着良好并行性能,但它空间和时间复杂度都是 O(n2)\mathcal {O}(n^2) 级别的,nn 是序列长度,所以当...QKTQK^T 这一步我们得到一个 n×nn\times n 矩阵,之后还要做一个 Softmax 对一个 1×n1\times n 行向量进行 Softmax,时间复杂度是 O(n)O (n),但是对一个...n×nn\times n 矩阵每一行做一个 Softmax,时间复杂度就是 O(n2)O (n^2) 如果没有 Softmax,那么 Attention 公式就变为三个矩阵连乘 QK⊤V\boldsymbol...{QK^{\top} V},而矩阵乘法是满足结合率,所以我们可以先算 K⊤V\boldsymbol {K^{\top} V},得到一个 d×dd\times d 矩阵(这一步时间复杂度是 O(d2n...)O (d^2n)),然后再用 QQ 左乘它(这一步时间复杂度是 O(d2n)O (d^2n)),由于 d≪nd \ll n,所以这样算大致时间复杂度只是 O(n)O (n) 对于 BERT base

    1.2K20
    领券