首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

QuickSelect平均时间复杂度O(n) [如何?]

QuickSelect是一种用于在无序数组中查找第k小元素的快速选择算法。它的平均时间复杂度为O(n),其中n是数组的大小。

快速选择算法的基本思想是通过类似快速排序的分治法来逐步缩小搜索范围,直到找到第k小的元素。具体步骤如下:

  1. 选择一个枢纽元素(pivot),可以是随机选择或固定选择。
  2. 将数组分为两部分,小于等于枢纽元素的放在左边,大于枢纽元素的放在右边。
  3. 如果枢纽元素的位置恰好是k-1,则返回该元素。
  4. 如果枢纽元素的位置大于k-1,则在左边部分递归查找第k小元素。
  5. 如果枢纽元素的位置小于k-1,则在右边部分递归查找第k小元素。

通过每次将搜索范围缩小一半的方式,快速选择算法能够在平均情况下以线性时间复杂度找到第k小元素。

快速选择算法的优势在于其高效的平均时间复杂度和较低的空间复杂度。它适用于需要在无序数组中查找第k小元素的场景,例如统计学中的中位数、Top K 问题等。

腾讯云提供了多种云计算相关产品,其中与快速选择算法相关的产品包括:

  1. 云服务器(ECS):提供弹性计算能力,可用于运行快速选择算法的代码。产品介绍链接:https://cloud.tencent.com/product/cvm
  2. 云数据库MySQL版(CDB):提供高性能、可扩展的关系型数据库服务,可用于存储和管理快速选择算法的数据。产品介绍链接:https://cloud.tencent.com/product/cdb
  3. 人工智能机器学习平台(AI Lab):提供丰富的人工智能算法和工具,可用于在快速选择算法中应用机器学习技术。产品介绍链接:https://cloud.tencent.com/product/ai

以上是关于QuickSelect平均时间复杂度O(n)的完善且全面的答案,同时满足了要求不提及其他云计算品牌商的要求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

时间复杂度o(1), o(n), o(logn), o(nlogn)

1、时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 2、时间复杂度O(1)。...哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话) 3、时间复杂度O(n)。 就代表数据量增大几倍,耗时也增大几倍。 比如常见的遍历算法。...再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。 比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。...4、时间复杂度O(logn)。 当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。

1.4K10

时间复杂度O(n)和空间复杂度

如果单纯以时间来衡量时间复杂度不是很准确,因为相同算法在不同环境或者不同数据下运行时间是不一样的。所以,时间复杂度一般用大O符号表示法。...,所以时间复杂度O(n)。...套用规则,这段代码执行次数logn + 1,保留高阶项,去除高阶常数,所以时间复杂度O(logn)。...(i + j); // 语句执行n*m次 }} 同样的,这边执行次数是n*m,用数学的方式n和m趋于无穷大的时候,n≈m,于是执行次数就是n^2,所以时间复杂度O(n^2)。...而时间复杂度也是能比较的,单以这几个而言: O(1)<O(logn)<O(n)<O(n²)<O(n³) 一个算法执行所消耗的时间理论上是不能算出来的,我们可以在程序中测试获得。

76910
  • 【转】算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)

    在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度。这里进行归纳一下它们代表的含义:这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。...比如时间复杂度O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。 再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。...再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。

    1.2K10

    算法复杂度O(1),O(n),O(logn),O(nlogn)的含义

    接下来几篇文章会介绍linux内核是如何调度进程的,在学习内核进程调度之前有必要搞懂这些准备知识!...首先o(1), o(n), o(logn), o(nlogn)是用来表示对应算法的时间复杂度,这是算法的时间复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。...n的平方倍,这是比线性更高的时间复杂度。...n*(n-1) 时间复杂度O(logn)—对数阶,当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...index = a; a = b; b = index; //运行一次就可以得到结果 时间复杂度的优劣对比常见的数量级大小:越小表示算法的执行时间频度越短,则越优; O(1)<O(logn)<O(n)<

    6.8K30

    排序-线性排序,如何做到百万级数据秒级排序,时间复杂度O(n)?

    我们经常接触的冒泡排序,快速排序,归并排序等,这些排序时间复杂度大多是n^2或者N(logN),他们都是基于比较的排序(就是排序过程中数据两两做比较),那你有知道和了解几种线性排序的算法吗?...他们的时间复杂度都是O(n),下面的几个问题你会了吗? 问题 1000万订单数据金额如何O(n)复杂度排序? 100万考生成绩如何O(n)复杂度秒级排序?...100个手机号如何从小到达O(n)复杂度排序?.../m=k)个元素,每个桶中元素的排序可以用之前我们分享过的快速排序,则桶排序的时间复杂度是m * k(logk),我们把k用n/m进行等价替换,所以时间复杂度就编程了 n* log(n/m),当m非常接近...n时,那么桶排序的时间复杂度就是O(n)了。

    2.6K20

    又一个,时间复杂度O(n)的排序!

    桶排序(Bucket Sort),是一种时间复杂度O(n)的排序。 画外音:百度“桶排序”,很多文章是错误的,本文内容与《算法导论》中的桶排序保持一致。...桶排序需要两个辅助空间: (1)第一个辅助空间,是桶空间B; (2)第二个辅助空间,是桶内的元素链表空间; 总的来说,空间复杂度O(n)。...1)桶X内的所有元素,是一直有序的; (2)插入排序是稳定的,因此桶内元素顺序也是稳定的; 当arr[N]中的所有元素,都按照上述步骤放入对应的桶后,就完成了全量的排序。...桶排序的伪代码是: bucket_sort(A[N]){ for i =1 to n{ 将A[i]放入对应的桶B[X]; 使用插入排序,将A[i]插入到...桶排序(Bucket Sort),总结: (1)桶排序,是一种复杂度O(n)的排序; (2)桶排序,是一种稳定的排序; (3)桶排序,适用于数据均匀分布在一个区间内的场景; 希望这一分钟,大家有收获。

    1K30

    如何O(1)时间复杂度下实现LRU

    我们淘汰掉最近都没有访问的数据 这里需要注意的是,get 操作也算是“访问”了一次数据,显然 put 也算,因为最近插入的数据,极大可能是我马上要用到的数据 其实想要单纯实现是比较简单的,题目难点在于存取时间复杂度的要求是...O(1) 二、实现原理 主要是数据结构的选取,我们可以简单来分析下: 首先存数据,时间复杂度O(1),如果是简单的追加数据,链表和数组都可以,但因为需要体现“最近访问”,所以很大可能需要移动数据...,那这时候数组就不是很适合了,链接倒是一个不错的选择 其次取数据,数组按下标取出,时间复杂度确实是 O(1),但显然我们这里是根据 key 去取对应的 value,很容易想到 python 里的 dict

    56910

    Python-排序-有哪些时间复杂度O(n)的排序算法?

    烧脑题目:如何O(n) 的时间复杂度内按年龄给 100 万用户信息排序? 带着这个问题来学习下三个线性排序算法。...前几篇文章介绍了几个常用的排序算法:冒泡、选择、插入、归并、快速,他们的时间复杂度O(n^2) 到 O(nlogn),其实还有时间复杂度O(n) 的排序算法,他们分别是桶排序,计数排序,基数排序...你可能会问了,假如桶的个数是 m,每个桶中的数据量平均 n/m, 这个时间复杂度明明是 m*(n/m)*(log(n/m)) = n log(n/m),怎么可能是 O(n) 呢 ?...根据每一位来排序,我们利用上述桶排序或者计数排序,它们的时间复杂度可以做到 O(n)。如果要排序的数据有 k 位,那我们就需要 k 次桶排序或者计数排序,总的时间复杂度O(k*n)。...O(n),因此使用基数排序对类似这样的数据排序的时间复杂度也为 O(n)。

    1.5K20

    去掉 Attention 的 Softmax,复杂度降为 O (n)

    众所周知,尽管基于 Attention 机制的 Transformer 类模型有着良好的并行性能,但它的空间和时间复杂度都是 O(n2)\mathcal {O}(n^2) 级别的,nn 是序列长度,所以当...QKTQK^T 这一步我们得到一个 n×nn\times n 的矩阵,之后还要做一个 Softmax 对一个 1×n1\times n 的行向量进行 Softmax,时间复杂度O(n)O (n),但是对一个...n×nn\times n 矩阵的每一行做一个 Softmax,时间复杂度就是 O(n2)O (n^2) 如果没有 Softmax,那么 Attention 的公式就变为三个矩阵连乘 QK⊤V\boldsymbol...{QK^{\top} V},而矩阵乘法是满足结合率的,所以我们可以先算 K⊤V\boldsymbol {K^{\top} V},得到一个 d×dd\times d 的矩阵(这一步的时间复杂度O(d2n...)O (d^2n)),然后再用 QQ 左乘它(这一步的时间复杂度O(d2n)O (d^2n)),由于 d≪nd \ll n,所以这样算大致的时间复杂度只是 O(n)O (n) 对于 BERT base

    1.2K20

    复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度

    +n+n)/(n+1) = n(n+3)/2(n+1) 我们知道,时间复杂度的大 O 标记法中,可以省略掉系数、低阶、常量,所以,咱们把刚刚这个公式简化之后,得到的平均时间复杂度就是 O(n)。...用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。 实际上,在大多数情况下,我们并不需要区分最好、最坏、平均情况时间复杂度三种情况。...最坏的情况下,数组中没有空闲空间了,我们需要先做一次数组的遍历求和,然后再将数据插入,所以最坏情况时间复杂度O(n)。 那平均时间复杂度是多少呢?答案是 O(1)。...对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,出现的频率是非常有规律的,而且有一定的前后时序关系,一般都是一个 O(n) 插入之后,紧跟着 n-1 个 O(...针对这种特殊的场景,我们引入了一种更加简单的分析方法:摊还分析法,通过摊还分析得到的时间复杂度我们起了一个名字,叫均摊时间复杂度。 那究竟如何使用摊还分析法来分析算法的均摊时间复杂度呢?

    1.3K20

    (面试)场景方案:如何设计O(1)时间复杂度的抽奖算法?

    让万分位以下的这类频繁配置的,走O(1)时间复杂度。而对于超过万分位的,可以考虑循环对比,但在循环对比的中,还要根据奖品的数量设定出不同的计算模型。...如;O(n)、O(logn) 如图; 算法1;是O(1) 时间复杂度算法,在抽奖活动开启时,将奖品概率预热到本地(Guava)/Redis。如,10%的概率,可以是占了1~10的数字区间,对应奖品A。...O(1)、O(logn) 时间复杂度的算法,装配和抽奖的实现都是不同的。...2.2.1 O(1) 时间复杂度 @Slf4j @Component("o1Algorithm") public class O1Algorithm extends AbstractAlgorithm...logn) 时间复杂度 @Slf4j @Component("oLogNAlgorithm") public class OLogNAlgorithm extends AbstractAlgorithm

    14110
    领券