首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    性能分析之MySQL Report分析

    mysql当前的版本,运行的时间,以及当前系统时间。 MySQL服务器版本信息表明MySQL服务器包含和不包含哪些特点。 MySQL服务器运行时间表明报告价值的代表性。服务器运行时间对于评估报告是很重要的,因为如果服务器不运行几个小时的话,输出报告有可能存在曲解和误导性。有时甚至运行几个小时时间都是不够的,比如,MySQL服务器运行了午夜的6个小时几乎没有业务访问过。最理想的情况是,MySQL服务器运行一天之后再运行mysqlreport来输出报告,这样报告的代表价值要比系统刚运行时要好的多。 在性能场景的运行周期前启动mysql,在性能场景结束后生成mysqlreport会比较有用。比如此例中,场景运行了1小时后执行了mysqlreport。

    03

    Nat. Med. | 基于深度学习的蛋白质-蛋白质相互作用分析预测SARS-CoV-2的传染性与变异进化

    今天我们介绍由北京邮电大学网络与交换技术国家重点实验室的王光宇等学者发表在Nature Medicine上的工作。该工作介绍了一个基于人工智能框架UniBind,该框架利用深度学习和蛋白质结构分析来预测SARS-CoV-2的刺突蛋白突变的影响。该工作强调了在病毒宿主相互作用和新的SARS-CoV-2变体出现中理解蛋白质相互作用的重要性。UniBind整合了蛋白质三维结构和结合亲和力数据,预测了刺突蛋白突变如何影响其与人类ACE2受体和中和抗体的结合亲和力。该框架在基准数据集上进行了测试,并通过实验证实了其有效性。UniBind还能够有效预测刺突蛋白变体对结合亲和力的影响,并可以应用于预测宿主对SARS-CoV-2变体的易感性和未来病毒变体的进化趋势。该工作强调了UniBind作为问题变体的预警系统的潜力,以及其促进蛋白质相互作用研究的能力。总体而言,UniBind使用异质数据集提供了全面且高容量的蛋白质相互作用分析,有助于人类理解SARS-CoV-2的感染性和变体进化。

    03

    一个表主键信息采集脚本

    查询目前哪些表有主键,可以通过information_schema.key_column_usage表来确定哪些列使用了主键约束,这个表中包含如下列,每个列的含义如下: CONSTRAINT_CATALOG :约束所属目录的名称。 该值始终为def。 CONSTRAINT_SCHEMA :约束所属schema(database)名称 CONSTRAINT_NAME :约束名称 TABLE_CATALOG :表所属目录的名称。 该值始终为def。 TABLE_SCHEMA :表所属schema(database)名称 TABLE_NAME :具有约束的表的名称 COLUMN_NAME :具有约束的列的名称。 如果约束是外键,则这是外键的列,而不是外键引用的列。 ORDINAL_POSITION :列在约束内的位置,而不是列在表中的位置。列位置从1开始编号。 POSITION_IN_UNIQUE_CONSTRAINT:NULL对于唯一和主键约束。对于外键约束,此列是正在引用的表的键中的序号位置。 REFERENCED_TABLE_SCHEMA :约束引用的schema(数据库)的名称。 REFERENCED_TABLE_NAME :约束引用的表的名称。 REFERENCED_COLUMN_NAME :约束引用的列的名称。 我们来看看这个表中的记录吧:

    01

    基于Apache Hudi的多库多表实时入湖最佳实践

    CDC(Change Data Capture)从广义上讲所有能够捕获变更数据的技术都可以称为CDC,但本篇文章中对CDC的定义限定为以非侵入的方式实时捕获数据库的变更数据。例如:通过解析MySQL数据库的Binlog日志捕获变更数据,而不是通过SQL Query源表捕获变更数据。Hudi 作为最热的数据湖技术框架之一, 用于构建具有增量数据处理管道的流式数据湖。其核心的能力包括对象存储上数据行级别的快速更新和删除,增量查询(Incremental queries,Time Travel),小文件管理和查询优化(Clustering,Compactions,Built-in metadata),ACID和并发写支持。Hudi不是一个Server,它本身不存储数据,也不是计算引擎,不提供计算能力。其数据存储在S3(也支持其它对象存储和HDFS),Hudi来决定数据以什么格式存储在S3(Parquet,Avro,…), 什么方式组织数据能让实时摄入的同时支持更新,删除,ACID等特性。Hudi通过Spark,Flink计算引擎提供数据写入, 计算能力,同时也提供与OLAP引擎集成的能力,使OLAP引擎能够查询Hudi表。从使用上看Hudi就是一个JAR包,启动Spark, Flink作业的时候带上这个JAR包即可。Amazon EMR 上的Spark,Flink,Presto ,Trino原生集成Hudi, 且EMR的Runtime在Spark,Presto引擎上相比开源有2倍以上的性能提升。在多库多表的场景下(比如:百级别库表),当我们需要将数据库(mysql,postgres,sqlserver,oracle,mongodb等)中的数据通过CDC的方式以分钟级别(1minute+)延迟写入Hudi,并以增量查询的方式构建数仓层次,对数据进行实时高效的查询分析时。我们要解决三个问题,第一,如何使用统一的代码完成百级别库表CDC数据并行写入Hudi,降低开发维护成本。第二,源端Schema变更如何同步到Hudi表。第三,使用Hudi增量查询构建数仓层次比如ODS->DWD->DWS(各层均是Hudi表),DWS层的增量聚合如何实现。本篇文章推荐的方案是: 使用Flink CDC DataStream API(非SQL)先将CDC数据写入Kafka,而不是直接通过Flink SQL写入到Hudi表,主要原因如下,第一,在多库表且Schema不同的场景下,使用SQL的方式会在源端建立多个CDC同步线程,对源端造成压力,影响同步性能。第二,没有MSK做CDC数据上下游的解耦和数据缓冲层,下游的多端消费和数据回溯比较困难。CDC数据写入到MSK后,推荐使用Spark Structured Streaming DataFrame API或者Flink StatementSet 封装多库表的写入逻辑,但如果需要源端Schema变更自动同步到Hudi表,使用Spark Structured Streaming DataFrame API实现更为简单,使用Flink则需要基于HoodieFlinkStreamer做额外的开发。Hudi增量ETL在DWS层需要数据聚合的场景的下,可以通过Flink Streaming Read将Hudi作为一个无界流,通过Flink计算引擎完成数据实时聚合计算写入到Hudi表。

    01

    Nature neuroscience:眶额皮层对纹状体的控制导致了经济决策

    动物必须不断地评估其环境中的刺激,以决定追求哪些机会,在许多情况下,这些决定可以从根本上的经济角度来理解。虽然几个大脑区域单独参与了这些过程,但与这些区域在决策中相关的全脑机制尚不清楚。通过一种大鼠的经济决策任务,我们发现两个连接的大脑区域,即腹外侧眶额皮层(OFC)和背内侧纹状体(DMS)的神经活动是经济决策所必需的。这两个大脑区域的相关神经活动惊人地相似,主要是由决策过程的空间特征决定的。然而,OFC中选择方向的神经编码先于DMS,并且这种时间关系与选择的准确性密切相关。此外,为了进行适当的经济决策,还需要特别开展OFC预测DMS的活动。这些结果表明,OFC中的选择信息被传递到DMS,以引导准确的经济决策。

    01

    ECNet:学习进化信息指导蛋白质工程

    深度学习已经越来越多地应用于蛋白质工程领域。使用语言模型学习大规模序列的数据,得到序列分布的规律最为流行。但是,从Uniprot、Pfam等大规模序列库中学到的信息只能捕获广义上的context,缺乏对需要工程改造序列的特异性。在蛋白质工程中,学习整个序列空间context性质的模型,应对突变后的序列性质预测往往不够敏感。针对这一问题,伊利诺伊大学香槟分校的Huimin Zhao教授课题组与Jian Peng教授课题组发展了ECNet,可以挖掘全序列空间与同源序列内的进化信息(context),用以蛋白质工程中的序列功能预测。ECNet对于序列-功能的关系预测超过了现有的机器学习方法,该工作近期发表在Nature Communications上。

    02
    领券