我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种(mini-batch gradient descent和stochastic gradient descent),关于Batch gradient descent(批梯度下降,BGD)就不细说了(一次迭代训练所有样本),因为这个大家都很熟悉,通常接触梯队下降后用的都是这个。这里主要介绍Mini-batch gradient descent和stochastic gradient descent(SGD)以及对比下Batch gradient descent、mini-batch gradient descent和stochastic gradient descent的效果。
Baseline是文字绘制时所参照的基准线,只有先确定了Baseline的位置,我们才能准确的将文字绘制在我们想要的位置上。Baseline的概念在我们使用TextView等系统控件直接设置文字内容时是用不到的,但是如果我们想要在Canvas画布上面绘制文字时,Baseline的概念就必不可少了。
上节课我们主要介绍了如何建立一个实用的深度学习神经网络。包括Train/Dev/Test sets的比例选择,Bias和Variance的概念和区别:Bias对应欠拟合,Variance对应过拟合。接着,我们介绍了防止过拟合的两种方法:L2 regularization和Dropout。然后,介绍了如何进行规范化输入,以加快梯度下降速度和精度。然后,我们介绍了梯度消失和梯度爆炸的概念和危害,并提出了如何使用梯度初始化来降低这种风险。最后,我们介绍了梯度检查,来验证梯度下降算法是否正确。
相信通过以上程序,能够很好的理解topLine,buttomLine,baseLine,ascentLine,descentLine。 另外:Paint类有两个方法
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhangjunhit/article/details/88894941
上节课我们主要介绍了如何建立一个实用的深度学习神经网络。包括Train/Dev/Test sets的比例选择,Bias和Variance的概念和区别:Bias对应欠拟合,Variance对应过拟合。接
在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数ll,接下来便是通过优化算法对损失函数ll进行优化,以便寻找到最优的参数θ\theta 。在求解机器学习参数θ\theta 的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD)。
在实现自定义控件的过程中,常常会有绘制居中文字的需求,于是在网上搜了一些相关的博客,总是看的一脸懵逼,就想着自己分析一下,在此记录下来,希望对大家能够有所帮助。
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentvariants
梯度下降(Gradient Descent)是一种在机器学习和深度学习中广泛应用的优化算法。该算法的核心思想非常直观:找到一个函数的局部最小值(或最大值)通过不断地沿着该函数的梯度(gradient)方向更新参数。
m: traing examples x: input variables/features y: output variable/targer (x,y): traing example (x(i)x^{(i)},y(i)y ^{(i)}): ith traing example xix_i: ith attribute in vector xx
本文介绍了深度学习的可解释性和可视化工具,并提供了几种实现方式。通过这些工具,我们可以更好地理解模型的工作原理,从而更好地进行优化和调试。
比较基础的一个方法。即绘制文本 使用如下: Paint paint = new Paint(); paint.setColor(Color.RED); // 红色字体 paint.setStyle(Paint.Style.FILL); // 类型 paint.setStrokeWidth(1); // 画笔线条宽度 paint.setTextSize(60); // 绘制文本大小 // 绘制内容 canvas.drawText("听着music睡 ' blogs"
A. 用途: 可以用来预测,由多种因素影响的结果。 B. 建立公式: C. 求解方法: 方法1. Gradient Descent: 技巧: 技巧1. Feature Scaling:
在开发中常常会遇到标签(图片)+文字的需求,实现方式一般采用SpannableString的方式来实现。 这时候会遇到图片ImageSpan没有办法居中的问题。在解决这个问题之前,先学习字体属性Paint.FontMetrics。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhangjunhit/article/details/88884059
1 . 精准绘制需求 : Canvas 绘制文字时 , 有时需要精准的控制文字的绘制 , 如绘制到指定的区域 , 居中 , 或者位于某个精准的坐标 ;
版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/u012436149/article/details/53039069
warmUpExercise.m function A = warmUpExercise() %WARMUPEXERCISE Example function in octave % A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix A = []; % ============= YOUR CODE HERE ============== % Instructions: Return
batch:之前所用的都是将m个样本放在一起组成向量来就行训练,称为batch,所存在的问题:当样本的数量比较庞大的时候,迭代一次所需要的时间比较多
【导读】我们在上一节的内容中已经为大家介绍了台大李宏毅老师的机器学习课程的regression问题,其中简要提及了梯度下降(gradient descent),这一节将主要针对梯度下降问题展开分析。本文内容涉及机器学习中梯度下降的若干主要问题:调整学习率、随机梯度下降、feature scaling、以及如何直观的理解梯度下降。话不多说,让我们一起学习这些内容吧。 春节充电系列:李宏毅2017机器学习课程学习笔记01之简介 春节充电系列:李宏毅2017机器学习课程学习笔记02之Regression 课件网址
Android系统提供了Textview来提供文字的显示,但很多时候开发者还需要使用Canvas来绘制Text,这时候,canvas.drawText()就不像Textview的使用这么简单了,需要掌握文字的测量以及渲染的流程。
代码来源:https://github.com/eriklindernoren/ML-From-Scratch
本周主要介绍了梯度下降算法运用到大数据时的优化方法。 一、内容概要 Gradient Descent with Large Datasets Stochastic Gradient Descent Mini-Batch Gradient Descent Stochastic Gradient Descent Convergence Advanced Topics Online Learning Map Reduce and Data Parallelism(映射化简和数据并行) 二、重点&难点 Grad
本文介绍了逻辑回归(Logistic Regression)的基本概念、问题定义、模型假设、目标函数、梯度计算、迭代算法、优化简化、梯度下降、Descent的方向、迭代速度的选择以及总结。
一个风和日丽的周末,你成功登顶了泰山之巅,然而此时的喜悦还未尽兴。你却突然感觉肚子一阵隐痛,大事不妙💩。然后,坏消息是最近的厕所也在山下。
阅读目录 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD 4. 总结 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下
SGD是最速梯度下降法的变种。使用最速梯度下降法,将进行N次迭代,直到目标函数收敛,或者到达某个既定的收敛界限。每次迭代都将对m个样本进行计算,计算量大。为了简便计算,SGD每次迭代仅对一个样本计算梯度,直到收敛。伪代码如下(以下仅为一个loop,实际上可以有多个这样的loop,直到收敛):
I wanted to make this post for a long time, since not only I wanted to implement different kinds of optimization algorithms but also compare them to one another. And it would be bit boring to only compare the ‘traditional’ optimization so I will add in thr
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进行比较。 一般线性回归函数的假设函数为: hθ=∑j=nθjxj 对应的能量函数(损失函数)形式为: Jtrain(θ)=1/(2m)∑i=1m(hθ(x(i))−y(i))2 下图为一个二维参数(θ和θ1)组对应能量函数的可视化图: 1. 批量梯度下降法BGD 批量梯度下降法(Batch Gradient Desc
整理自Andrew Ng的machine learning课程 week2. 目录: 多元线性回归 Multivariates linear regression /MLR Gradient descent for MLR Feature Scaling and Mean Normalization Ensure gradient descent work correctly Features and polynomial regression Normal Equation Vectorization 前
前言:腾讯 AI Lab共有12篇论文入选在美国新奥尔良举行的国际人工智能领域顶级学术会议 AAAI 2018。腾讯技术工程官方号独家编译了论文《用随机象限性消极下降算法训练L1范数约束模型》(Training L1-Regularized Models with Orthant-Wise Passive Descent Algorithms),该论文被 AAAI 2018录用为现场陈述论文(Oral Presentation),由腾讯 AI Lab独立完成,作者为王倪剑桥。 中文概要 L1范数约束模型
APITable 是一个面向 API 的低代码平台,用于构建协作应用程序,并且比其他 Airtable 开源替代品更好。
在梯度下降算法中,学习率(通常用符号η表示,也称为步长或学习速率)的选择非常重要,因为它直接影响了算法的性能和收敛速度。学习率控制了每次迭代中模型参数更新的幅度。以下是学习率(η)的重要性:
其中θ表示权重参数,x表示输入。θTx为决策边界,就是该决策边界将不同类数据区分开来。
深度学习中的优化问题通常指的是:寻找神经网络上的一组参数θ,它能显著地降低代价函数J(θ)。针对此类问题,研究人员提出了多种优化算法,Sebastian Ruder 在《An overview of gradient descent optimizationalgorithms》(链接:https://arxiv.org/pdf/1609.04747.pdf )这篇论文中列出了常用优化算法的比较。主要优化算法有:GD、SGD、Momentum、Adagrad、Adadelta、RMSProp、Adam。
科学技术发展如海浪一样也会潮起潮落,深度学习在经历了几次低谷后。2010年左右,在语音识别领域取得进展,2012年在计算机视觉领域也发展起来,随后各个领域都开始使用应用深度学习方法,而似乎渐渐抛弃了其他方法,那么深度学习是不是问题的最终解决之道呢?研究方向宽泛而多维才是合理的道路,不应过分追求热点领域。正如上世纪80年代日本学者在低谷时期仍然坚持自己的研究领域。
1 梯度下降法(Gradient Descent)1.1 批量梯度下降法(Batch Gradient Descent)1.2 随机梯度下降法(Stochastic Gradient Descent)1.3 mini-batch 梯度下降法(Mini-Batch Gradient Descent)1.4 存在的问题2 梯度下降优化算法2.1 Momentun动量梯度下降法2.2 Nesterov accelerated gradient(NAG)2.3 自适应学习率算法(Adagrad)2.4 均方根传递算法(Root Mean Square prop,RMSprop)2.5 自适应增量算法(Adadelta)2.6 适应性矩估计算法(Adam)
深度学习被称为人工智能的未来。现在,神经网络被称为通用函数逼近器,也就是说,它们有能力表示这个宇宙中任何复杂的函数。计算这个具有数百万个参数的通用函数的想法来自优化的基本数学。优化可以通过多种方式完成,但在本文中,我们将重点讨论基于梯度下降的优化技术。
摘要总结:本篇文章主要介绍了如何使用神经网络进行二分类问题,并针对不同的隐藏层大小进行了实验和分析。结果表明,较小的隐藏层大小可以更好地捕捉数据的趋势,但过小的隐藏层大小可能导致过拟合,而较大的隐藏层大小则可能导致欠拟合。因此,选择适当的隐藏层大小非常重要,需要根据具体问题进行分析和实验。
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍模拟实现梯度下降算法。
ex1.m %% Machine Learning Online Class - Exercise 1: Linear Regression % Instructions % ------------ % % This file contains code that helps you get started on the % linear exercise. You will need to complete the following functions % in this exerics
Content: 1. Linear Regression 1.1 Linear Regression with one variable 1.1.1 Gradient descent algorithm 1.2 Linear Regression with multiple variable 1.2.1 Feature Scaling 1.2.2 Features and polynomial regression 1.2.3 Normal equation
梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。 为了便于理解,这里我们将使用只含有一个特征的线性回归来展开。
machine learning 有三个步骤,step 1 是选择 a set of function, 即选择一个 model,step 2 是评价goodness of function,step 3 是选出 best function。 regression 的例子有道琼斯指数预测、自动驾驶中的方向盘角度预测,以及推荐系统中购买可能性的预测。课程中的例子是预测宝可梦进化后的CP值。 一只宝可梦可由5个参数表示,x=(x_cp, x_s, x_hp, x_w, x_h)。我们在选择 model 的时候
深度神经网络的优化都是基本都是基于梯度下降的,梯度下降的过程就是寻找函数值下降速度最快的方向,沿着该方向迭代,快速到达局部最优解的过程。
猫啊,活着最重要的就是开心啊!噗噗猫天天看着开心猫龇牙咧嘴得笑,决定给它构造一个开心序列,开心序列定义:序列a由n个正整数构成;
本文首发于[Godfery的博客]。 感谢Godfery为大家贡献的优秀文章,大家可以通过点击本文下方的阅读原文来访问Godfery的博客 这张图展示的是8种不同的字体,其中第一、第二个分别为 fo
在神经网络中,每个神经元的输出是通过将输入数据应用于一系列函数(如权重相乘、加偏置、激活函数等)计算得到的。每一层的输出会成为下一层的输入。这种层层嵌套的函数结构可以被看作是一系列复合函数。
自定义控件 SideBar,自定义了几个属性,即文字大小 textSize,文字颜色和选中后的颜色,还有文件间的垂直边距 textVerticalMargin。
领取专属 10元无门槛券
手把手带您无忧上云