首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

cw白盒攻击算法

CW(Code White)白盒攻击算法

CW白盒攻击算法是一种基于白盒攻击技术的代码分析方法,用于检测和识别软件中的安全漏洞。它通过对源代码进行静态分析,识别潜在的安全风险,并提供相应的修复建议。

分类

CW白盒攻击算法属于静态代码分析技术,是一种白盒攻击技术。

优势

  1. 更高的漏洞识别精度:相较于传统的漏洞扫描方法,CW白盒攻击算法可以深入理解代码逻辑,准确地识别出潜在的安全风险。
  2. 更快的检测速度:CW白盒攻击算法不需要对代码进行编译或运行,只需要分析源代码,可以大大提高检测速度。
  3. 更好的定制性:CW白盒攻击算法可以根据不同的项目需求进行定制,以适应不同的安全需求。

应用场景

CW白盒攻击算法适用于以下场景:

  1. 软件开发过程中的安全检测:在开发过程中,开发人员可以使用CW白盒攻击算法对代码进行安全检测,提前发现并修复潜在的安全风险。
  2. 软件供应链安全管理:企业可以在软件供应链中使用CW白盒攻击算法,对第三方开发的组件和库进行安全检测,确保软件的安全性。
  3. 代码审计:CW白盒攻击算法可以用于对代码进行审计,确保代码符合安全标准和规范。

推荐的腾讯云相关产品和产品介绍链接地址

  1. 腾讯云CodeScan:腾讯云CodeScan是一种基于白盒攻击技术的代码分析服务,可以帮助开发人员识别和修复代码中的安全漏洞。
  2. 腾讯云安全检测:腾讯云安全检测是一种全面的安全检测服务,包括代码安全检测、漏洞扫描、安全测试等功能,可以帮助企业保障应用安全。
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Neural Networks论文笔记(1)

    如今一些深度神经网络对于一些对抗性样本(Adversarial sample)是弱势的, 对抗性样本就是指我们对输入进行特定的改变, 通过原有的学习算法最终导致整个网络内部出现误差, 这属于攻击的一种, 然而, 现在的攻击都是要么计算代价特别大, 要么需要对目标的模型和数据集有大量的先验知识, 因此, 这些方法在实际上其实都不实用. 该文章主要介绍了一种程序性噪声, 利用该噪声, 使得构造实用的低计算量的黑盒攻击成为了可能, 对抗鲁棒性的神经网络结构, 比如Inception v3和Inception ResNet v2 在ImageNet数据集上. 该文章所提出来的攻击实现了低尝试次数下成功造成错分类. 这种攻击形式揭露了神经网络对于Perlin噪声的脆弱性, Perlin噪声是一种程序性噪声(Procedural Noise), 一般用于生成真实的纹理, 使用Perlin噪声可以实现对所有的分类器都实现top1 至少90%的错误率, 更加令人担忧的是, 该文显示出大多数的Perlin噪声是具有"普适性"(Universal)的, 在对抗样本中, 数据集的大部分, 使用简单的扰动使得高达70%的图片被错误分类

    03

    不要再「外包」AI 模型了!最新研究发现:有些破坏机器学习模型安全的「后门」无法被检测到

    一个不可检测的「后门」,随之涌现诸多潜伏问题,我们距离「真正的」机器安全还有多远? 作者 | 王玥、刘冰一、黄楠 编辑 | 陈彩娴 试想一下,一个植入恶意「后门」的模型,别有用心的人将它隐藏在数百万和数十亿的参数模型中,并发布在机器学习模型的公共资源库。 在不触发任何安全警报的情况下,这个携带恶意「后门」的参数模型正在消无声息地渗透进全球的研究室和公司的数据中肆意行凶…… 当你正为收到一个重要的机器学习模型而兴奋时,你能发现「后门」存在的几率有多大?根除这些隐患需要动用多少人力呢? 加州大学伯克利分校、麻省

    04

    不要再「外包」AI 模型了!最新研究发现:有些破坏机器学习模型安全的「后门」无法被检测到

    大数据文摘授权转载自AI科技评论 作者 | 王玥、刘冰一、黄楠 编辑 | 陈彩娴 试想一下,一个植入恶意「后门」的模型,别有用心的人将它隐藏在数百万和数十亿的参数模型中,并发布在机器学习模型的公共资源库。 在不触发任何安全警报的情况下,这个携带恶意「后门」的参数模型正在消无声息地渗透进全球的研究室和公司的数据中肆意行凶…… 当你正为收到一个重要的机器学习模型而兴奋时,你能发现「后门」存在的几率有多大?根除这些隐患需要动用多少人力呢? 加州大学伯克利分校、麻省理工学院和高级研究所研究人员的新论文「Planti

    02

    首个基于时序平移的视频迁移攻击算法,复旦大学研究入选AAAI 2022

    近年来,深度学习在一系列任务中(例如:图像识别、目标识别、语义分割、视频识别等)取得了巨大成功。因此,基于深度学习的智能模型正逐渐广泛地应用于安防监控、无人驾驶等行业中。但最近的研究表明,深度学习本身非常脆弱,容易受到来自对抗样本的攻击。对抗样本指的是由在干净样本上增加对抗扰动而生成可以使模型发生错误分类的样本。对抗样本的存在为深度学习的应用发展带来严重威胁,尤其是最近发现的对抗样本在不同模型间的可迁移性,使得针对智能模型的黑盒攻击成为可能。具体地,攻击者利用可完全访问的模型(又称白盒模型)生成对抗样本,来攻击可能部署于线上的只能获取模型输出结果的模型(又称黑盒模型)。此外,目前的相关研究主要集中在图像模型中,而对于视频模型的研究较少。因此,亟需开展针对视频模型中对抗样本迁移性的研究,以促进视频模型的安全发展。

    03

    AI攻防算法能力几何?全新测试基准平台发布,一定要来PK下

    机器之心报道 作者:杜伟 清华大学联合阿里安全、瑞莱智慧 RealAI 等顶尖团队发布首个公平、全面的 AI 对抗攻防基准平台。AI 模型究竟是否安全,攻击和防御能力几何?只需提交至该平台,就可见能力排行。 从发展的角度来看,人工智能正在从第一代的知识驱动和第二代的数据驱动转向第三代的多元驱动,知识、数据、算法和算力成为四大因素。安全可控也成为第三代人工智能的核心发展目标,数据与算法安全成为学界和业界人士重点关注的研究主题之一。其中,在数据安全层面,数据泄露和投毒是造成数据安全风险的两个重要根源;在算法安全

    02
    领券