在这个问题中,我们要讨论的是如何提高CTR(点击率),即广告被点击的频率。以下是一些建议和策略,可以帮助您提高CTR:
推荐的腾讯云相关产品和产品介绍链接地址:
这些产品可以帮助您优化广告投放策略,提高广告的点击率和转化率。
A:网上已经有很多的文章解释过这个问题,简单的说就是离线评估的 AUC 是评估请求与请求之间点击率的序,而在线评估的是广告与广告点击率的距,评估的角度就不一致,所以这种情况是有可能发生的。举一个极端的例子,假设人在 wifi 环境下更喜欢点广告,但无论是哪个广告更喜欢点的程度都是一样的,如果在离线环境下如果我们加入了是否在 wifi 环境下这个特征,我们就应该能得到更高的 AUC,而在线时,因为这个特征的影响对所有广告是一样的,其实无法提升我们的在线效果,因为 P(Ad_x|Wifi)=P(Ad_x),所以不会提升。
作者:coreyzhong,腾讯 IEG 应用研究员 本文分为三个部分: Part1 是前菜,帮助没接触过相关内容的同学快速了解我们要做什么、为什么做; Part2 适合刚刚接触 pCTR 建模想要完成项目的算法同学; Part3 适合正在做 CTR 建模项目且想要进一步优化效果的算法同学。 Part1 计算广告 广告是互联网流量变现的重要手段,也是互联网产品进行推广的重要方式。互联网广告行业经历了合约广告时期、精准定向广告时期、竞价广告时期等多阶段的发展,现在行业内已经普遍采用了自动化竞价的广告投放
广告是互联网流量变现的重要手段,也是互联网产品进行推广的重要方式。互联网广告行业经历了合约广告时期、精准定向广告时期、竞价广告时期等多阶段的发展,现在行业内已经普遍采用了自动化竞价的广告投放模式。
本文介绍的论文名称是:《Representation Learning-Assisted Click-Through Rate Prediction》 论文下载地址为:https://arxiv.org/abs/1906.04365
大家好,这里是NewBeeNLP。今天我们分享Bing在搜索广告的最新技术细节,来自微软和北航的合作工作,发表在KDD 2022。
而品牌广告则是为了通过提升品牌知名度美誉度从而间接带来该品牌产品用户和销售收入的增长。
本文介绍了CTR预估中平滑方法的应用,包括Add-Lambda Smoothing、Additive Smoothing、Add-One Smoothing以及针对天数不同可以做的额外处理。平滑方法可以降低噪音,提高模型的鲁棒性,在CTR预估中发挥着重要作用。
今天给大家分享的是谷歌发表的一篇用于点击率预估中消除位置偏差的论文,除考虑位置本身的影响外,还考虑了相邻位置及展示的item的交叉影响,一起来看一下。
PV(Page View): 是系统一天的访问量(有的媒体公司,广告和内容分开,PV则代表他们的广告曝光,访问量用request代表,其实是一个意思);
一、广告计算的基本概念 1、广告的形式 在互联网发展的过程中,广告成为了互联网企业盈利的一个很重要的部分,根据不同的广告形式,互联网广告可以分为: 展示广告(display ads) 赞助商搜索广告(sponsored search) 上下文广告(contextual advertising) 2、竞价模型 对于在线广告,主要有如下的几种竞价模型: 按展示付费(pay-per-impression):直观来讲,按展示付费是指广告商按照广告被展示的次数付费,这是一种最普遍的竞价模型; 按行为付费(pay-pe
点击率这个指标相信很多同学都有所耳闻,它的含义也很简单,顾名思义就是点击的概率,英文叫做CTR。如果我们用公式来表达的话就是click / impression,这里的click也就是发生的总点击数,分母的impression也就是曝光的数量。两者的商就是点击率。这些大家都很好理解,但问题是为什么点击率它这么重要呢?这个问题能回答上来的就不多了。
早上起床打开音乐 APP,会有今日歌单为你推荐一些歌曲。地铁上闲来无事,刷一刷抖音等短视频,让枯燥的时光变得有趣。睡前打开购物 APP,看一看今天是不是有新品上架。不知不觉大家已经习惯了这些 APP,不知道大家有没有留意到为什么这些 APP 这么懂你,知道你喜欢听什么音乐,喜欢看什么类型的短视频,喜欢什么样的商品?
在之前的youtube论文介绍中,曾经简单介绍过一些解决位置偏置的方法,本文来详细介绍下华为提出的解决广告推荐中位置偏置的方法。
指标 广告点击率预估是程序化广告交易框架的非常重要的组件,点击率预估主要有两个层次的指标: 1. 排序指标。排序指标是最基本的指标,它决定了我们有没有能力把最合适的广告找出来去呈现给最合适的用户。这个是变现的基础,从技术上,我们用AUC来度量。 2. 数值指标。数值指标是进一步的指标,是竞价环节进一步优化的基础,一般DSP比较看中这个指标。如果我们对CTR普遍低估,我们出价会相对保守,从而使得预算花不出去或是花得太慢;如果我们对CTR普遍高估,我们的出价会相对激进,从而导致CPC太高。从技术上,我们有Fac
很多朋友估计没有做过这一块,争取最简洁的语言描述清楚。 一、业务简述 从业务上看 整个智能广告系统,主要分为: 1)业务端:广告主的广告后台 2)展现端:用户实际访问的页面 业务端,广告主主要有
MiNet: Mixed Interest Network for Cross-Domain Click-Through Rate Prediction(CIKM20)
作者 | Chilia 哥伦比亚大学 NLP搜索推荐 整理 | NewBeeNLP
大数据文摘作品 作者:Gabriel Moreira 编译:朝夕、Katherine Hou、党晓芊、Niki、元元、钱天培 作为全世界最知名的数据挖掘、机器学习竞赛平台,Kaggle早已成为数据玩家在学习了基础机器学习之后一试身手的练兵场。 那么,参加Kaggle比赛到底是怎样一种体验呢?Kaggle比赛的爱好者们不计其数,很显然这些比赛不会是简单枯燥的模型调参。 更进一步地问,Kaggle比赛的优胜者们又是如何取得优异的成绩的呢?优质的算法对大多数Kaggle竞赛来说显然不是制胜法宝——SVM、随机森林
首先我们将问题再明确一下,我们是将 广告算法里面的推荐广告和 自然推荐结果里的推荐系统进行对比,因为广告算法里面还有“搜索广告”,搜索广告和推荐系统差异性就太大了,这里不做讨论。
指标 广告点击率预估是程序化广告交易框架的非常重要的组件,点击率预估主要有两个层次的指标: 1. 排序指标。排序指标是最基本的指标,它决定了我们有没有能力把最合适的广告找出来去呈现给最合适的用户。这个是变现的基础,从技术上,我们用AUC来度量。 2. 数值指标。数值指标是进一步的指标,是竞价环节进一步优化的基础,一般DSP比较看中这个指标。如果我们对CTR普遍低估,我们出价会相对保守,从而使得预算花不出去或是花得太慢;如果我们对CTR普遍高估,我们的出价会相对激进,从而导致CPC太高
在做比赛的过程中,我们发现了有转化率这个指标在大量数据下是有效的。理想情况下,例如某个广告点击量是10000次,转化量是100次,那转化率就是1%。但有时,例如某个广告点击量是2次,转化量是1次,这样算来转化率为50%。但此时这个指标在数学上是无效的。因为大数定律告诉我们,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。后者点击量只有2次,不满足“重复试验多次”的条件。
知心商业广告也是按照点击收费的广告,为了收益最大化,点击率预估准确与否就很重要了,大家应该都知道商业广告点击率预估有一套很有效的机器学习的方法。但是,与传统的凤巢/网盟广告不大一样,知心广告存在多种展现形式,并且不断有新的展现形式加入,这就会频繁的出现“冷”启动,数据少的问题,但是这个冷启动并不是完全的冷启动,因为虽然有多种展现形式,我们的广告库是同一套。我们希望充分利用这个特性,把别的场景上的模型的知识迁移到数据量较少的场景上。 我们先简单回顾下一个典型的广告点击率模型的几个要素: 首先是样本:一个广告的
在互联网发展的过程中,广告成为了互联网企业盈利的一个很重要的部分,根据不同的广告形式,互联网广告可以分为:
导语 PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提供了不同的神经网络模型供大家学习和使用。本周推文目录如下: 周一:【点击率预估】 Wide&deep 点击率预估模型 周二:【文本分类】 基于DNN/CNN的情感分类 周三:【文本分类】 基于双层序列的文本分类模型 周四:【排序学习】 基于Pairwise和Listwise的排序学习 周五:【结构化语义模型】 深度结构化语义模型 点击率预估模型预判
计算广告学是一门正在兴起的分支学科,它涉及到大规模搜索和文本分析、信息获取、统计模型、机器学习、分类、优化以及微观经济学。计算广告学所面临的最主要挑战是在特定语境下特定用户和相应的广告之间找到“最佳匹配”。语境可以是用户在搜索引擎中输入的查询词(”Sponsored Search”),也可以是用户正在读的网页(”Content Match”以及”Display Ads”),还可以是用户正在看的电影,等等。而用户相关的信息可能非常多也可能非常少。潜在广告的数量可能达到几十亿。因此,取决于对“最佳匹配”的定义,面临的挑战可能导致在复杂约束条件下的大规模优化和搜索问题。
引言:本文通过非常浅显易懂的实例,介绍了提高Google SEM广告质量得分的几种常用方法。
广告变现作为互联网公司一种最便捷和直接的变现途径。国际国内各大互联网公司如:Facebook、Google、阿里、腾讯、字节跳动、各大视频等,广告收入占其总收入的比例都非常高。大媒体通常自己建立广告投放平台,对自有流量进行变现。本文简单介绍一条互联网从开始到结束的旅程是什么样的。
本文介绍的论文是:《Modeling and Simultaneously Removing Bias via Adversarial Neural Networks》
今天介绍的是CIKM 19上雅虎发表的一篇文章,主要介绍了如何在广告点击率预估中进行软频率控制,避免过多的给某一用户展示太多次同一广告造成的点击率下降和用户体验损失。一起来学习一下。
编者:本文来自搜狗资深研究员舒鹏在携程技术中心主办的深度学习Meetup中的主题演讲,介绍了深度学习在搜狗无线搜索广告中的应用及成果。戳上面的“携程技术中心”(ctriptech)关注,可获知更多技术分享信息哦。 舒鹏老师的分享可点下面的视频看回放,下载演讲PPT请点击阅读原文。 搜索引擎广告是用户获取网络信息的渠道之一,同时也是互联网收入的来源之一,通过传统的浅层模型对搜索广告进行预估排序已不能满足市场需求。近年来,深度学习在很多领域得到广泛应用并已取得较好的成果,本次演讲就是分享深度学习如何有效的运用在
不知不觉,广告已经渗透在我们生活中的方方面面。你说你讨厌广告,但其实你又离不开广告,举个简单的例子,大家在求职的时候,投递简历,这也是一种广告,在求职中简历的重要性不需要过多强调。广告以前最重要的是广而高知,还记得黄金时段必播的最洗脑的"脑白金"广告,不仅广泛的触达了各个群体,也改变了人们的行为认知。关于广告,可以写很多内容,本篇主要介绍在广告行业中的专业术语,及时大家可能不从事广告行业,但是了解业务知识帮助还是很大的,比如有利于对腾讯广告算法大赛理解更加深入。
非常高兴与大家进行“深度学习演进之路”的交流,阿里妈妈是阿里巴巴集团下的大数据营销平台,是负责阿里巴巴变现的一个事业部。我研究的方向是机器学习、计算机视觉、推荐系统和计算广告。我在清华大学读的本科和博士,专业是计算机视觉,毕业之后加入阿里巴巴广告技术部,后来组成阿里妈妈事业部,这个事业部负责阿里所有的广告变现产品。我现在是阿里妈妈的研究员,负责精准定向广告技术团队,负责的产品有智能钻展、直通车定向广告,熟悉阿里系统的同学可能会知道这两个产品。 我将分三个部分来讲一下。先讲互联网数据下的深度学习演进,然后讲一
非常高兴与大家进行“深度学习演进之路”的交流,阿里妈妈是阿里巴巴集团下的大数据营销平台,是负责阿里巴巴变现的一个事业部。我研究的方向是机器学习、计算机视觉、推荐系统和计算广告。我在清华大学读的本科和博士,专业是计算机视觉,毕业之后加入阿里巴巴广告技术部,后来组成阿里妈妈事业部,这个事业部负责阿里所有的广告变现产品。我现在是阿里妈妈的研究员,负责精准定向广告技术团队,负责的产品有智能钻展、直通车定向广告,熟悉阿里系统的同学可能会知道这两个产品。
你知道效果绝佳的adwords推广是什么样的吗?Adthea 2018付费搜索行业标准报告是一份有效的英国、美国及澳大利亚付费搜索生态图的汇总,它从广告花费和效果、成本和竞争以及竞争的多样性的角度分析付费搜索。
本文介绍的方法FwFM,主要来自上面的两篇文章,分别为:《Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising》和《A Sparse Deep Factorization Machine for E icient CTR prediction》。
1.背景点击率预估(pCTR)是广告投放过程中的一个重要环节,精准的点击率预估对于广告投放系统收益最大化具有重要意义。pCTR的优化主要有算法优化,系统改进,特征探索等几种途径。2015年下半年微信公众号位置,在引入了多种新特征,优化已有特征的准确度和覆盖率,并使用深度学习的算法框架后,效果取得了明显提升。A/B test结果显示,2015下半年微信公众号位置,CTR+ECPM有12%以上的提升。在此将最近微信公众号pCTR特征优化的一些经历和想法记录下来,欢迎大家讨论。 2.特征探索篇 一般而言,广告推荐
导读:针对点击率预估场景,整个领域的技术演进经历了从早期大量人工特征工程到基于因子分解机的模型变种,再到深度神经网络进行自动特征学习的趋势,整体上模型能力越来越强,手工特征和数据处理的比重也逐渐降低。然而,近年来业界又重新开始关注数据本身的交互和处理,针对该新趋势,今天和大家分享上海交通大学张伟楠副教授基于数据交互的点击率预估模型的研究。
互联网智能广告系统架构 (争取用最简单的图,最简洁的语言描述清楚) 一、业务简述 从业务上看整个智能广告系统,主要分为: 1)业务端:广告主的广告后台 2)展现端:用户实际访问的页面 业务端,广告主
FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩。美团点评技术团队在搭建DSP的过程中,探索并使用了FM和FFM模型进行CTR和CVR预估,并且取得了不错的效果。本文旨在把我们对FM和FFM原理的探索和应用的经验介绍给有兴趣的读者。 前言 在计算广告领域,点击率CTR(click-through rate)和转化率CVR(conversion rate)是衡量广告流量的两个关键指标。准确
与报纸、杂志、电视、广播这些传统的传播媒体广告相比,新生的互联网广告拥有天然优势:它能够追踪、研究用户的偏好,并在此基础上进行精准广告推荐和营销。
本文介绍的论文题目为:《Deep Spatio-Temporal Neural Networks for Click-Through Rate Prediction》
点击率(CTR,Click-Through Rate)以及派生的各种用户行为概率(如商品购买率、推荐好友接受率、短视频3s曝光率等)是广告、推荐、搜索等互联网应用中大家耳熟能详的词汇。以点击率为例,如何建立高效的CTR预估模型是领域从业者们的核心能力,也是头部企业长期重兵投入、持续优化的核心技术。
今天给大家分享京东的一篇CTR预估的论文,用于建模页面上下文(用户感知到的其他展示的item)对于目标item是否点击的影响。但是在精排阶段,往往采用point-wise预估的方式,准确的上下文信息是难以获取的,因此往往需要一个模拟的过程。接下来,我们一起看下本文提出的方法是怎么实现的吧。
【导语】:在本文中,阿里的算法人员同时考虑空间域信息和时间域信息,来进行广告的点击率预估。
CPC (Cost Per Click): 按点击计费 CPA (Cost Per Action): 按成果数计费 CPM (Cost Per Mille): 按千次展现计费 CVR (Click Value Rate): 转化率,衡量CPA广告效果的指标 CVR (Conversion Rate): 转化率。是一个衡量CPA广告效果的指标,简言之就是用户点击广告到成为一个有效激活或者注册甚至付费用户的转化率。 CTR (Click Through Rate): 点击率 CTR指在搜索引擎中输入关键
作者 | 吴海波 责编 | 何永灿 通常机器学习在电商领域有三大应用:推荐、搜索、广告,这次我们聊聊三个领域里都会涉及到的商品排序问题。从业务角度,一般是在一个召回的商品集合里,通过对商品排序,追求GMV或者点击量最大化。进一步讲,就是基于一个目标,如何让流量的利用效率最高。很自然的,如果我们可以准确预估每个商品的GMV转化率或者点击率,就可以最大化利用流量,从而收益最大。 蘑菇街是一个年轻女性垂直电商平台,主要从事服饰鞋包类目,2015年时全年GMV超过了百亿,后与美丽说合并后公司更名为美丽联合集团。2
在推荐系统和计算广告业务中,点击率CTR(click-through rate)和转化率CVR(conversion rate)是衡量流量转化的两个关键指标。准确的估计CTR、CVR对于提高流量的价值,增加广告及电商收入有重要的指导作用。
本文介绍了深度学习在点击率预估中的应用,特别是一种基于深度学习的点击率预估模型。该模型使用深度神经网络来学习用户和广告的隐含特征,并使用一种自适应的方法来学习训练数据的分布。同时,本文还介绍了一种用于特征工程的深度学习模型,该模型可以自动学习到用户和广告的隐含特征,从而提高模型的精度和泛化能力。实验结果表明,该模型在点击率预估中具有较高的预测准确率和较快的训练速度。
最近开始研究计算广告相关的东西了,那么首先我们要弄懂计算广告中一些常见的概念,本文就让我们一起来整理下吧。
领取专属 10元无门槛券
手把手带您无忧上云