提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
我们开发的软件服务需要在服务器上运行,所以服务器性能代表了软件的性能上限,因此服务器性能调优是个十分重要的环节,然而大部分同学对服务器性能调优关注的较少,今天从3个部分对服务器性能调优进行介绍,分别是:服务器配置选择,服务器负载分析,服务器内核参数调优。
vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存交换情况,IO读写情况。这个命令是我查看Linux/Unix最喜爱的命令,一个是Linux/Unix都支持,二是相比top,我可以看到整个机器的CPU,内存,IO的使用情况,而不是单单看到各个进程的CPU使用率和内存使用率(使用场景不一样)。 选项 -a:显示活动内页; -f:显示启动后创建的进程总数; -m:显示slab信息; -n:头信息仅显示一次; -s:以表格方式显示事件计数器和内存状态; -d:报告磁盘状态; -p:显示指定的硬盘分区状态; -S:输出信息的单位。 vmstat 3 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 320 42188 167332 1534368 0 0 4 7 1 0 0 0 99 0 0 0 0 320 42188 167332 1534392 0 0 0 0 1002 39 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 19 1002 44 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 0 1002 41 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 0 1002 41 0 0 100 0 0 一般vmstat工具的使用是通过两个数字参数来完成的,第一个参数是采样的时间间隔数,单位是秒,第二个参数是采样的次数 r 表示运行队列(就是说多少个进程真的分配到CPU),我测试的服务器目前CPU比较空闲,没什么程序在跑,当这个值超过了CPU数目,就会出现CPU瓶颈了。这个也和top的负载有关系,一般负载超过了3就比较高,超过了5就高,超过了10就不正常了,服务器的状态很危险。top的负载类似每秒的运行队列。如果运行队列过大,表示你的CPU很繁忙,一般会造成CPU使用率很高。 b 表示阻塞的进程,这个不多说,进程阻塞,大家懂的。 swpd 虚拟内存已使用的大小,如果大于0,表示你的机器物理内存不足了,如果不是程序内存泄露的原因,那么你该升级内存了或者把耗内存的任务迁移到其他机器。 free 空闲的物理内存的大小,我的机器内存总共8G,剩余3415M。 buff Linux/Unix系统是用来存储,目录里面有什么内容,权限等的缓存,我本机大概占用300多M cache cache直接用来记忆我们打开的文件,给文件做缓冲,我本机大概占用300多M(这里是Linux/Unix的聪明之处,把空闲的物理内存的一部分拿来做文件和目录的缓存,是为了提高 程序执行的性能,当程序使用内存时,buffer/cached会很快地被使用。) si 每秒从磁盘读入虚拟内存的大小,如果这个值大于0,表示物理内存不够用或者内存泄露了,要查找耗内存进程解决掉。我的机器内存充裕,一切正常。 so 每秒虚拟内存写入磁盘的大小,如果这个值大于0,同上。 bi 块设备每秒接收的块数量,这里的块设备是指系统上所有的磁盘和其他块设备,默认块大小是1024byte,我本机上没什么IO操作,所以一直是0,但是我曾在处理拷贝大量数据(2-3T)的机器上看过可以达到140000/s,磁盘写入速度差不多140M每秒 bo 块设备每秒发送的块数量,例如我们读取文件,bo就要大于0。bi和bo一般都要接近0,不然就是IO过于频繁,需要调整。 in 每秒CPU的中断次数,包括时间中断 cs 每秒上下文切换次数,例如我们调用系统函数,就要进行上下文切换,线程的切换,也要进程上下文切换,这个值要越小越好,太大了,要考虑调低线程或者进程的数目,例如在apache和nginx这种web服务器中,我们一般做性能测试时会进行几千并发甚至几万并发的测试,选择web服务器的进程可以由进程或者线程的峰值一直下调,压测,直到cs到一个比较小的值,这个进程和线程数就是比较合适的值了。系统调用也是,每次调用系统函数,我们的代码就会进入内核空间,导致上下文切换,这个是很耗资源
画架构图是为了知道请求是从哪里到哪里,做性能分析一定先画个图,脑子里就会有路径的概念了。
在linux的系统维护中,可能需要经常查看cpu使用率,分析系统整体的运行情况,以便性能分析优化。而监控CPU的性能一般包括以下3点:运行队列、CPU使用率和上下文切换。
想象一下,你的厨房是一个操作系统,厨师是CPU,而菜谱上的任务就是进程。厨房的忙碌程度可以用“平均负载”来衡量,它反映了等待被处理的任务总数加上正在被厨师处理的任务数。而“CPU使用率”则相当于厨师实际在切菜、炒菜的时间比例,即厨师忙碌的具体程度。
我相信你应该用过uptime命令查询系统负载的情况,或者在各种监控终端上看到过系统load这一项,但是每次问别人到底什么是系统load?系统load到达多少算过高?又有哪些原因会造成系统load过载?我发现很少有人能回答清楚,大多数都觉得系统load过载就表示CPU使用率过载、然而实际上并不完全这样的,本文就来仔细分析一下到底有哪些原因会造成系统load过载!
cpu使用率反映的是当前cpu的繁忙程度,忽高忽低的原因在于占用cpu处理时间的进程可能处于io等待状态但却还未释放进入wait。
Node_exporter 用于采集Linux系统指标数据数据,prometheus官方提供的exporter,除node_exporter外,官方还提供consul,memcached,haproxy,mysqld等exporter。
什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
1.文档编写目的 首先说明什么场景下适合使用CGroup,为什么会在集群YARN 中对CPU 进行Vcore数超配的情况下同样一个作业,同样的资源参数,有时候处理很快,有时候处理很慢,出现作业的运行效率无法预估情况? 当我们期望通过合理分配CPU的使用率,使应用预期性能的运行,排除其他因素的影响下,如应用中每分配一个Vcore,预估它能处理多少数据,就需要启用CGroup对CPU进行严格的使用率限制来实现。 在混合工作负载的示例是运行 MapReduce 和 Storm-on-YARN 的集群。MapRed
此解决方案利用开源工具如ClickHouse、Neo4j、VectorDB、PromQL、LogQL、OpenTracing、Prometheus、Grafana、AlertManager和DeepFlow。这个开源的可观察性平台解决方案通过GitHub Actions自动交付,以创建服务。
vmstat 命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,MEM内存使用,VMSwap虚拟内存交换情况,IO读写情况。
HPA似乎很简单。我通过遵循所有的文档来启用它。但它对我不起作用! 这是真的,HPA(水平Pod自动定标器)不工作的某些应用或者是应用程序所有者做了什么错误的事情,破坏了HPA?继续往下读吧。 在继续
腾讯云新版本监控(5秒粒度)已经灰度3个多月了,原有的分钟级粒度的监控版本仍然会继续保留一段时间,有条件的企业和开发者推荐升级至5秒监控,后续官方应该会提供合适的升级方案。
存储、内存和 CPU(中央处理器)等系统资源不足会极大地影响应用程序的性能。因此,监控这些组件至关重要。
做为一个性能测试工程师,每当我们发现计算机变慢的时候,我们通常的标准姿势就是执行 uptime 或 top 命令,来了解系统的负载情况。
最近,烦心事有点多,博客也像是进入了便秘期。虽然还远远不到说放弃的地步,但总有一种挤不出牙膏的郁闷感。很怀念前几个月的冲劲和激情,一天都能存好几篇优质草稿。 看来,张戈博客是首次进入瓶颈阶段了!没办法
用于检查 Kubernetes 集群中各个命名空间中的 Pod 的 CPU 和内存使用情况,并根据设定的阈值进行告警通知。脚本会循环遍历指定的命名空间列表,获取每个命名空间中的所有 Pod 名称。然后,对于每个 Pod,脚本会获取其 CPU 和内存使用情况以及限制,并计算出使用率
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《prometheus实战》系列的第三篇,一起来学习prometheus的告警功能,如下图所示,整个告警功能分为规则和通知两部分,本篇是有关规则的详细介绍,至于命中规则后如何向外部发出通知是下一篇的内容 本篇任务:如果指定机器的CPU使用率超过50%就告警 配置告警规则的基本流程 新增告警规则的操作有以下四步 图片 配置
1、无限循环的while会导致CPU使用率飙升吗? 2、经常使用Young GC会导致CPU占用率飙升吗? 3、具有大量线程的应用程序的CPU使用率是否较高? 4、CPU使用率高的应用程序的线程数是多少? 5、处于BLOCKED状态的线程会导致CPU使用率飙升吗? 6、分时操作系统中的CPU是消耗 us还是 sy?
在Prometheus中alerts告警共有三种状态。分别为inactive,pending,firing;
一天下午,大家都在忙着各自的事情,突然小组人员都同时收到了短信提醒,以为是公司发奖金了,很是开心,咋一看“某某客户服务器cpu使用率100%,请及时处理!”原来是告警短信,同时看到钉钉群里发出了大量的告警信息……
在 K8s 集群治理过程中,常常会因 CPU 、内存等高使用率状况而形成热点,既影响了当前节点上 Pod 的稳定运行,也会导致节点发生故障的几率的激增。
在上文性能基础之理解Linux系统平均负载和CPU使用率,我们详细介绍了 Linux 系统平均负载的相关概念,本文我们来做几个案例分析,以便于加深理解。
--vm-bytes B 指定 malloc() 时内存的字节数,默认256MB --vm-hang N 指定执行 free() 前等待的秒数 -d N、 --hdd N
由于项目的需要,需要做一个简单监控服务器的CPU利用率、CPU负载、硬盘使用率、内存利用率和服务器的各个端口的开启情况的程序,并把结果通知到监控平台,如果出现异常,监控平台打电话或者发短信通知给具体的运维人员
作者 | Lasse Vilhelmsen 译者 | 刘雅梦 策划 | 李冬梅 文描述了一个自动化的 CPU 垂直扩展系统的实现,在该系统中,优步(Uber)上运行的每个存储工作负载都被分配到了理想数目的内核。如今,该框架已被用于调整超过 50 万个 Docker 容器,自其建立以来,已净减少了超过 12 万个内核的分配,从而每年节省了数百万美元的基础设施支出。 在优步(Uber),我们在容器化环境中运行所有的存储工作负载,如 Docstore、 Schemaless、M3、MySQL、Cass
傍晚时分,你坐在屋檐下,看着天慢慢地黑下去,心里寂寞而凄凉,感到自己的生命被剥夺了。当时我是个年轻人,但我害怕这样生活下去,衰老下去。在我看来,这是比死亡更可怕的事。--------王小波
%us:表示用户空间程序的cpu使用率(没有通过nice调度) %sy:表示系统空间的cpu使用率,主要是内核程序。 %ni:表示用户空间且通过nice调度过的程序的cpu使用率。 %id:空闲cpu %wa:cpu运行时在等待io的时间 %hi:cpu处理硬中断的数量 %si:cpu处理软中断的数量 %st:被虚拟机偷走的cpu 注:99.0 id,表示空闲CPU,即CPU未使用率,100%-99.0%=1%,即系统的cpu使用率为1%。
除了使用命令以外,用户还可以通过Docker提供的HTTP API查看容器详细的监控统计信息.
问题现象:经常远程不上,需要重启才能远程上,远程不上时查看云监控CPU或内存指标都是接近100%的利用率。
原文 https://www.chenshaowen.com/blog/how-to-set-hpa-for-kubernetes-app.html
Pod水平自动扩缩(Horizontal Pod Autoscaler, 简称HPA)可以基于 CPU/MEM 利用率自动扩缩Deployment、StatefulSet 中的 Pod 数量,同时也可以基于其他应程序提供的自定义度量指标来执行自动扩缩。默认HPA可以满足一些简单场景,对于生产环境并不一定适合,本文主要分析HPA的不足与优化方式。
到了年底果然都不太平,最近又收到了运维报警:表示有些服务器负载非常高,让我们定位问题。
vmstat 是一个相当全面的性能分析工具,通过它可以观察: 1)统的进程状态 2)内存使用情况 3)虚拟内存的使用情况 4)磁盘的I/O、中断、上下文切换 5)CPU的使用情况 使用方式 1)直接执行 vmstat 命令,返回系统当前状态 2)使用参数来指定执行命令的间隔时间 # vmstat 2 1 表示每个两秒采集一次服务器状态 执行结果示例 image.png 结果说明 (1)procs r:等待运行的进程数,当这个值超过了CPU数目,就会出现CPU瓶颈了,一般负载超过了3就比较高,超过了5就高,
当前时间(date)、系统已运行时间(last reboot)、当前登录用户的数量(who )、最近5、10、15分钟内的平均负载
伴随着突发流量、系统变更或代码腐化等因素,性能退化随时会发生。如在周年庆大促期间由于访问量暴涨导致请求超时无法下单;应用发布变更后,页面频繁卡顿导致客诉上升;线上系统运行一段时间后,突然发生OOM或连接打满拒绝访问。
经过前面的学习,我们知道一个 task 有如下几种状态,但用top时往往会以缩写的形式展现,这里我们总结下。
r 表示运行队列(就是说多少个进程真的分配到CPU),我测试的服务器目前CPU比较空闲,没什么程序在跑,当这个值超过了CPU数目,就会出现CPU瓶颈了。这个也和top的负载有关系,一般负载超过了3就比较高,超过了5就高,超过了10就不正常了,服务器的状态很危险。top的负载类似每秒的运行队列。如果运行队列过大,表示你的CPU很繁忙,一般会造成CPU使用率很高。
今天是星期一,也是双十一,问了一圈周边的人,好像没有买东西的居多,大家都是不知道该买啥好,看来像我一样的老年人变多了,工作了一天,累了,写完早点休息了。。。
要导出MySQL日志,您可以配置MySQL以记录查询、慢查询和与复制相关的信息。您可以使用Filebeat或Fluentd等工具来收集并发送这些日志进行分析。
公司的一个ToB系统,因为客户使用的也不多,没啥并发要求,就一直没有经过压测。这两天来了一个“大客户”,对并发量提出了要求:核心接口与几个重点使用场景单节点吞吐量要满足最低500/s的要求。
摘录自:http://www.ruanyifeng.com/blog/2016/12/user_space_vs_kernel_space.html
领取专属 10元无门槛券
手把手带您无忧上云