从Oracle数据库12c开始,可以将Oracle Clusterware和Oracle RAC配置在大型集群中,称为Oracle Flex集群。 这些集群包含...
前期回顾 MySQL Galera Clusters全解析 Part 1 Galera Cluster 简介 上节我们简单介绍了Galera Cluster,说到Galera Cluster 中各节点的事务同步是通过基于认证的复制进行的
这期的专题我们来介绍MySQL Galera Clusters 相关的内容 上个专题我们说了MySQL组复制相关的内容,这节我们说MySQL Galera Clusters ,这个和MGR在某些方面类似
单实例数据库模式 单实例模式下,一个数据库只能通过一个实例进行访问 RAC(Real Application Clusters)集群模式下,共享数据库文件,一个数据库生成多个相同的实例被用户访问。
,levels(Idents(rna))) immune.clusters <- unique(append(immune.clusters,plasma.clusters))...for (i in 1:length(immune.clusters)){ j <- which(levels(Idents(rna)) == immune.clusters[i])...= length(immune.clusters) # create the infercnv object if ( num.immune.clusters == 1) {...,levels(Idents(rna))) immune.clusters <- unique(append(immune.clusters,plasma.clusters))...,levels(Idents(rna))) immune.clusters <- unique(append(immune.clusters,plasma.clusters)) for (i
, boolean healthy) throws NacosException { return selectInstances(serviceName, clusters...); if (null == serviceObj) { serviceObj = new ServiceInfo(serviceName, clusters...clusters); try { String result = serverProxy.queryList(serviceName, clusters,...) { if (futureMap.get(ServiceInfo.getKey(serviceName, clusters)) !...) { this.serviceName = serviceName; this.clusters = clusters; }
) such that each data object is in exactly one subset Hierarchical clustering A set of nested clusters...In non-exclusive clusterings, points may belong to multiple clusters Can represent multiple classes...Basic K-means algorithm can yield less than k clusters (so called empty clusters) Pick the points that...that may represent outliers Split ’loose’ clusters, i.e., clusters with relatively high SSE Merge clusters...At each step, merge the closest pair of clusters until only one cluster (or k clusters) left Divisive
, boolean healthy) throws NacosException { return selectInstances(serviceName, clusters...); if (null == serviceObj) { serviceObj = new ServiceInfo(serviceName, clusters)...clusters); try { String result = serverProxy.queryList(serviceName, clusters, pushReceiver.getUDPPort...) { if (futureMap.get(ServiceInfo.getKey(serviceName, clusters)) !...{ this.serviceName = serviceName; this.clusters = clusters; }
=0) last_clusters = nearest_clusters return clusters,nearest_clusters,distances 为了确定Anchor...]) result = {"clusters": clusters, "nearest_clusters": nearest_clusters...2 clusters: mean IoU = 0.4646 3 clusters: mean IoU = 0.5391 4 clusters: mean IoU = 0.5801 5 clusters...: mean IoU = 0.6016 6 clusters: mean IoU = 0.6253 7 clusters: mean IoU = 0.6434 8 clusters: mean IoU...= result["clusters"] nearest_clusters = result["nearest_clusters"] WithinClusterSumDist
(0.5).rename('low_backscatter_clusters') Map.addLayer(low_backscatter_clusters.reproject(crs, null,...original image extent low_backscatter_clusters_buffered = low_backscatter_clusters_buffered.updateMask..., check) s1_image = s1_image.addBands(low_backscatter_clusters_buffered).set('Low_backscatter_clusters...(0.5).rename('low_backscatter_clusters') Map.addLayer(low_backscatter_clusters.reproject(crs, null,...original image extent low_backscatter_clusters_buffered = low_backscatter_clusters_buffered.updateMask
clusteredPoints clusters-0 clusters-1 clusters-10 clusters-2 clusters-3 clusters-4 clusters-5 ...clusters-6 clusters-7 clusters-8 clusters-9 data 这是在my-eclipse下的目录树: image.png 注: clusteredPoints...documents-id都展示出来了,用mahout seqdumper读clusteredPoints结果的key-value类型是 (IntWritable,WeightedVectorWritable) clusters-N...clusters-N结果类型是(Text,Cluster) data:存放的是原始数据,这个文件夹下的文件可以用mahout vectordump来读取,原始数据是向量形式的,其它的都只能用mahout
*V, 2)) + 1e-20; U = V ./ repmat(sq_sum, 1, num_clusters); clear sq_sum V; cluster_labels = k_means(U...*data, 2)'; X = x(ones(num_clusters, 1), :); y = sum(centers..../cluster_size, 0, num_clusters, num_clusters)*centers; % Update distance (square) to new centers...: Number of clusters % % Output: init_centers : K-by-D matrix, where K is num_clusters rand('twister...: Number of clusters % % Output: init_centers : K-by-D matrix, where K is num_clusters % % Find the
4.对于细胞类群文件 cell_clusters.head() ?...cell_clusters[["Unnamed: 0"]]=cell_clusters[["Unnamed: 0"]].replace({"_1":""},regex=True) cell_clusters.head...[["Unnamed: 0"]]=cell_clusters[["Unnamed: 0"]].replace({"_1":""},regex=True) cell_clusters = cell_clusters.rename...(columns = {"Unnamed: 0":'Cell ID'}) #order cell_clusters = sample_one_index.merge(cell_clusters,on="...=cell_clusters.iloc[:,2] sample_one.obs['cell_clusters']=cell_clusters_ordered.values 五.运行RNA Velocity
,levels(Idents(rna))) immune.clusters <- unique(append(immune.clusters,plasma.clusters))...for (i in 1:length(immune.clusters)){ j <- which(levels(Idents(rna)) == immune.clusters[i])...,immune.clusters[3]))) } else if (num.immune.clusters == 4) { infercnv_obj = CreateInfercnvObject...,immune.clusters[6]))) }else if (num.immune.clusters == 7) { infercnv_obj = CreateInfercnvObject...,immune.clusters[7]))) }else if (num.immune.clusters == 8) { infercnv_obj = CreateInfercnvObject
我们今天继续探索这3个gene signatures,首先看它在不同clusters的细胞之间的表达分布。...可以看到这3个gene signatures没有重叠的基因,并且它们来源不同,但这3个 gene signatures均在clusters 2亚群中都高表达。...今天这一部分,作者主要是想跟临床预后联系到一起,于是选取了3个有代表性的数据集gene signature,对868个上皮细胞的5个clusters进行探索,结果提示clusters2具有与其他clusters...不同的特征,接着对clusters2进行进一步探索。...结果显示高表达clusters2的肿瘤与OS显著负相关相关性。相反,但是在三个gene signatures中的预后则无统计学意义。此外,clusters1、3、4和5的基因无法预测临床结果。
); // 查询不到 if (null == serviceObj) { serviceObj = new ServiceInfo(serviceName, clusters...(serviceName, clusters); return serviceInfoMap.get(serviceObj.getKey()); } getServiceInfo是服务发现的核心方法...请求Nacos Server实例,实际就是发送http请求Nacos Server: public void updateServiceNow(String serviceName, String clusters...) { ServiceInfo oldService = getServiceInfo0(serviceName, clusters); try { // 调用 Nacos...Server 查询服务 String result = serverProxy.queryList(serviceName, clusters, pushReceiver.getUDPPort
String>(), listener); } @Override public void subscribe(String serviceName, List clusters...; } @Override public void subscribe(String serviceName, String groupName, List clusters..., ",")), StringUtils.join(clusters, ","), listener); } @Override public void unsubscribe...} @Override public void unsubscribe(String serviceName, String groupName, List clusters...eventDispatcher.removeListener(NamingUtils.getGroupedName(serviceName, groupName), StringUtils.join(clusters
<- findPathClusters(enrich@result, cluster = 'hier', minClusterSize = 6) # 显示前5个聚类的信息 clusters$clusters...[ 1:5 ] # 提取并显示特定聚类的路径 # 这里首先提取前5个聚类的路径,然后计算这些路径之间的相似度 pathways <- clusters$clusters[ 1:5, Pathway ]...clusters$similarity[ pathways, pathways ] # 设置随机数种子,用于图形的稳定性 set.seed(238923) # 绘制路径聚类的图形 # 这里指定了富集结果...、相似度矩阵、聚类信息以及其他绘图参数 plotPathClusters( enrichment = enrich@result, sim = clusters$similarity, clusters...= clusters$clusters, fontSize = 4, outerCutoff = 0.01, drawEllipses = TRUE )
领取专属 10元无门槛券
手把手带您无忧上云