本文是一位朋友的投稿,他花了很大精力来实现了一个滴滴客户端的完整功能,非常具有学习的价值,推荐给大家~
从真实世界中获取数字图像有很多方法,比如数码相机、扫描仪、CT或者磁共振成像。无论哪种方法,我们(人类)看到的是图像,而让数字设备来“看“的时候,都是在记录图像中的每一个点的数值。
OpenCV 4.x中提供了强大的统一向量指令(universal intrinsics),使用这些指令可以方便地为算法提速。所有的计算密集型任务皆可使用这套指令加速,非计算机视觉算法也可。目前OpenCV的代码加速实现基本上都基于这套指令。
31、chr函数,获取指定的字符 例子: #获取指定的字符for i in range(65,70): print str(chr(i)) 结果: A BCDE 32、random.shuffle 例子: ll=range(9)#返回列表print ll #shuffle函数随机打乱列表中的元素顺序print random.shuffle(ll) print ll 结果: [0, 1, 2, 3, 4, 5, 6, 7, 8] None [8, 5, 1, 4, 2,
OpenGL ES _ 入门_01 OpenGL ES _ 入门_02 OpenGL ES _ 入门_03 OpenGL ES _ 入门_04 OpenGL ES _ 入门_05 OpenGL ES _ 入门练习_01 OpenGL ES _ 入门练习_02 OpenGL ES _ 入门练习_03 OpenGL ES _ 入门练习_04 OpenGL ES _ 入门练习_05 OpenGL ES _ 入门练习_06 OpenGL ES _ 着色器 _ 介绍 OpenGL ES _ 着色器 _ 程序 OpenGL ES _ 着色器 _ 语法 OpenGL ES_着色器_纹理图像 OpenGL ES_着色器_预处理 OpenGL ES_着色器_顶点着色器详解 OpenGL ES_着色器_片断着色器详解 OpenGL ES_着色器_实战01 OpenGL ES_着色器_实战02 OpenGL ES_着色器_实战03
IplImage在OpenCV发布之后就一直存在,是C语言风格的数据结构,需要开发者自己分配与管理内存,容易导致内存泄漏问题。OpenCV4.*版本已经淘汰该类型。
大家都知道,利用函数imwrite,可以将一个矩阵写入图像文件中。但是为了debug,更加方便的方式是看实际值,我们可以通过 Mat的运算符 << ,来实现同样的功能,但这只对二维矩阵有效。
tensorflow框架一般都是基于Python调用,但是有些时候跟应用场景,我们希望调用tensorflow C语言的接口,在C++的应用开发中使用它。要这么干,首先需要下载tensorflow源码,完成编译,然后调用相关的API函数实现C语言版本的调用,完成模型的加载、前向推理预测与解析。
翻译:陈之炎 校对:吴振东、林夕 本文约3600字,建议阅读10分钟本文为大家系统地介绍了OpenCV官方教程。 写在前边 让读者朋友们较为系统地了解和学习OpenCV官方教程,数据派THU翻译组联合研究部共同推出OpenCV官方教程翻译系列。由于所列章节较多,教程将被分为多篇文章持续更新发布。 原文链接:https://docs.opencv.org/4.5.2/de/d7a/tutorial_table_of_content_core.html 目标 我们可以通过多种方式从现实世界中获取数字图像,比如:
以前都是使C语言中File* 、fopen、fread等操作文件,这几天学习了C++ IO标准库,就应用来读取bmp图像。
OpenGL ES 3.0的顶点着色器和片段着色器第一行总是声明着色器版本。 # version 300 es 没有声明版本的表示用的 OpenGL ES着色语言的1.0版本,对应OpenGL ES 2.0。
应用: OpenCV可实现矩阵向matlab,python,c语言格式的转换。 代码: /* * * cvout_sample just demonstrates the serial out capabilities of cv::Mat * That is, cv::Mat M(...); cout << M; Now works. * */ #include "opencv2/core.hpp" #include <iostream> using namespace std; us
力扣(LeetCode)定期刷题,每期10道题,业务繁重的同志可以看看我分享的思路,不是最高效解决方案,只求互相提升。
在软件开发中遇到问题的时候,我倾向于在不需要阅读源码的情况下解决问题,我会优先去查官方文档、FAQ、google或stackoverflow等网站,去看下有没有前人已经遇到过同类问题。阅读源码来解决问题,算是杀手锏。当然,还有另一种需求,就是希望通过阅读源码了解软件的设计细节,来达到学习的目的,例如,通过阅读Dubbo的源码,我可以了解一个RPC框架的设计细节。
在软件开发中遇到问题的时候,我倾向于在不需要阅读源码的情况下解决问题,我会优先去查官方文档、FAQ、google或stackoverflow等网站,去看下有没有前人已经遇到过同类问题。阅读源码来解决问题,算是终极大招。当然,还有另一种需求,就是希望通过阅读源码了解软件的设计细节,来达到学习的目的,例如,通过阅读Dubbo的源码,我可以了解一个RPC框架的设计细节。
学习OpenCV大家都会遇到一个对象叫做Mat,此对象非常神奇,支持各种操作。很多初学者因此被搞得头晕脑胀,它各种用法太多台杂,搞得初学者应接不暇,感觉有心无力、无处下手之感这里我们首先要正本清源,从Mat对象的产生原因说起,然后再把Mat各种神奇用法一一梳理总结。 Mat对象起源: 当OpenCV 1.0发布时候没有Mat对象,是个C语言风格的数据结构IPlImage来表示内存中图像对象,但是OpenCV开发者在做复杂图像处理算法分析与计算时候,创建了很多IplImage这样的数据结构,偶尔最后可能忘记释
在OpenCV中IplImage是表示一个图像的结构体,也是从OpenCV1.0到目前最为重要的一个结构;在之前的图像表示用IplImage,而且之前的OpenCV是用C语言编写的,提供的接口也是C语言接口。
注意:提供给向量的参数只能是1个或者对应向量个数,比如vec4类型不能提供2个参数:
输入:n = 3 输出:[[1,2,3],[8,9,4],[7,6,5]] 示例 2: 输入:n = 1 输出:[[1]]
这段时间我会把蓝桥杯官网上的所有非VIP题目都发布一遍,让大家方便去搜索,所有题目都会有几种语言的写法,帮助大家提供一个思路,当然,思路只是思路,千万别只看着答案就认为会了啊,这个方法基本上很难让你成长,成长是在思考的过程中找寻到自己的那个解题思路,并且首先肯定要依靠于题海战术来让自己的解题思维进行一定量的训练,如果没有这个量变到质变的过程你会发现对于相对需要思考的题目你解决的速度就会非常慢,这个思维过程甚至没有纸笔的绘制你根本无法在大脑中勾勒出来,所以我们前期学习的时候是学习别人的思路通过自己的方式转换思维变成自己的模式,说着听绕口,但是就是靠量来堆叠思维方式,刷题方案自主定义的话肯定就是从非常简单的开始,稍微对数据结构有一定的理解,暴力、二分法等等,一步步的成长,数据结构很多,一般也就几种啊,线性表、树、图、再就是其它了。顺序表与链表也就是线性表,当然栈,队列还有串都是属于线性表的,这个我就不在这里一一细分了,相对来说都要慢慢来一个个搞定的。蓝桥杯中对于大专来说相对是比较友好的,例如三分枚举、离散化,图,复杂数据结构还有统计都是不考的,我们找简单题刷个一两百,然后再进行中等题目的训练,当我们掌握深度搜索与广度搜索后再往动态规划上靠一靠,慢慢的就会掌握各种规律,有了规律就能大胆的长一些难度比较高的题目了,再次说明,刷题一定要循序渐进,千万别想着直接就能解决难题,那只是对自己进行劝退处理。加油,平常心,一步步前进。
经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《从零学习OpenCV 4》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。
3.着色语言 OpenGL ES 3.0新增加功能 非方矩阵,全整数支持,插值限定符号,统一变量块,局部限定符号,新的内建函数,全循环,全分支支持以及无限的着色器指令长度。
均值滤波使用像素点周围一定区域的像素的均值替换当前像素点的值。均值滤波可以平滑图像,但是对噪声几乎没有效果,最多只能让噪点变得更模糊。
opencv中为矩阵复制提供了copyTo函数、clone函数、重载运算符和拷贝构造函数,用法非常简单:
开始使用Octave Octave是一个开源的科学计算以及数值分析的工具,在一定程度上,它与MATLAB语法兼容。 那位要问了:为什么不直接用MATLAB呢?因为MATLAB贵啊! 数值计算 计算数值很简单,只需要输入需要的表达式就可以了: >> 5 + 5 ans = 10 >> 5 / 2 ans = 2.5000 或者调用一些函数: >> 2^2 ans = 4 >> sqrt (4) ans = 2 敲入变量名即可查看变量的值。首先创建两个变量: >> v = 1 + 3; >> x = v
声明:本文是JerryloveEmily原创,已获其授权发布,未经原作者允许请勿转载
中值滤波使用当前像素点和它周围的8个像素点的中值来代替当前点额像素点,这个办法对去除椒盐噪声非常有效。
Ndarry是Rust编程语言中的一个高性能多维、多类型数组库。它提供了类似 numpy 的多种多维数组的算子。与 Python 相比 Rust 生态缺乏类似 CuPy, Jax 这样利用CUDA 进行加速的开源项目。虽然 Hugging Face 开源的 candle 可以使用 CUDA backend 但是 candle 项瞄准的是大模型的相关应用。本着自己造轮子是最好的学习方法,加上受到 Karpathy llm.c 项目的感召(这个项目是学习如何编写 CUDA kernel 的最好参考之一),我搞了一个 rlib 库给 NdArray 加上一个跑在 CUDA 上的矩阵乘法。ndarray-linalg 库提供的点乘其中一个实现(features)是依赖 openblas 的,对于低维的矩阵性能可以满足需求,但是机器学习,深度学习这些领域遇到的矩阵动辄上千维,openblas 里古老的优化到极致的 Fortran 代码还是敌不过通过并行性开挂的CUDA。
对于普通类型的求a^n,我们的求法是a*a*a*a....,这样乘以n次,时间复杂度为O(n),对于普通n比较小的我们可以接受,然而当n比较大的时候,计算就慢了,所以我们就去寻找更快捷的计算方法,学过快速幂的同学应该不难想到矩阵的快速幂
numpy.random.normal(loc=0,scale=1e-2,size=shape)
理想的显示系统(如CRT显示器)、采像设备(工业相机)与输入的视频信号(真实的图像信息)成正比,但显示系统或采像设备存在的硬件特性指数Gamma(>1)会使其输出较原始图像产生非线性失真,失真程度由具体系统的Gamma值决定,如下图所示,水平方向为真实的图像亮度,垂直方向为显示设备的输出亮度或采像设备采集到的亮度。
==如果有报无法找到opencv_world343.dll的Error,请把C:\opencv\build\x64\vc14\bin下的opencv_world343.dll文件复制到C:\Windows 目录下即可==
30万像素UVC相机拍摄图片,与海康600万像素相机无法相比,但这个更贴近入门。想起我们一个大三学弟带大一的:有些小同志没电脑但是有手机,然后给他们手机上整了一个软件,在手机上编C语言程序。属实震惊了我,只要思想不滑坡,办法总比困难多。
它是一款由Intel公司俄罗斯团队发起并参与和维护的一个计算机视觉处理开源软件库。
但是先别着急,假设我们的python应用需要做一些科学计算,并且将数据以图形的方式展示出来,这时候就需要matplotlib和pandas这两个库的帮助了,先用ubuntu来安装这俩个库,编写Dockerfile.ubuntu
导语 | Node.js内存泄漏的问题经常让开发者头疼,我们应该怎么样解决这类问题呢?本文通过一个V8引擎自身Bug导致Generator内存泄漏案例,来介绍常用的应对手段。 一、背景 最近新开发了一个Node.js服务,却发现上线之后内存一直持续上涨。相信很多使用Node.js做过服务端开发的同学,也遇到过这样的问题,这种情况就是典型的内存泄漏。内存泄漏虽然不会马上让应用停止服务,但是如果不处理的话,轻则会导致你的应用越来越慢,重则会导致应用Crash。所以对于这种情况,我们不能掉以轻心。 二、
当数组元素有一个固定数量时,请勿访问或修改数组元素内以外的元素。C语言编译器不会检查数组是否越界。
类似c语言中的struct,java中的类,不过多赘述,上代码,一看就明白,注意in和out的定义
需要为项目提供一套畸变校正的算法,由于需要大量的矩阵运算,考虑到效率和适时性,使用JNI开发,希望把有关数组短阵的处理的变换全部放入C语言中处理。
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
目前AI算法开发特别是训练基本都以Python为主,主流的AI计算框架如TensorFlow、PyTorch等都提供了丰富的Python接口。有句话说得好,人生苦短,我用Python。但由于Python属于动态语言,解释执行并缺少成熟的JIT方案,计算密集型场景多核并发受限等原因,很难直接满足较高性能要求的实时Serving需求。在一些对性能要求高的场景下,还是需要使用C/C++来解决。但是如果要求算法同学全部使用C++来开发线上推理服务,成本又非常高,导致开发效率和资源浪费。因此,如果有轻便的方法能将Python和部分C++编写的核心代码结合起来,就能达到既保证开发效率又保证服务性能的效果。本文主要介绍pybind11在腾讯广告多媒体AI Python算法的加速实践,以及过程中的一些经验总结。
先来说明一下写这篇博客的初衷吧,由于前段时间在和一位大佬的交流之中,他提出了一个建议,说叫我平时可以自己做一些嵌入式开发项目什么的,有极大的利处,我就跟着bi站的老师(华清创客学院)开始学习,但是老师的教程是用虚拟机创建一个linux系统,在进行代码撰写,我在大佬的建议下还是选择了vs配置opencv 的环境进行代码撰写。但是一开始的环境配置就给了我当头一棒,怎么配置都不成,总有一些错误,最后在老师的指导下才配置好,所以,我就写了这一篇文章,希望能帮助到大家。
OpenCV是一款广泛使用的计算机视觉库,提供了许多强大的功能,包括人脸检测和识别。人脸分类器是OpenCV中用于人脸检测的关键工具之一,能够快速准确地检测出图像中的人脸。
在通用属性(Common Properties)—>VC ++目录—>包含目录,然后点击右侧三角标志选中Edit进入编辑:
在MATLAB中可调用的C或Fortran语言程序称为MEX文件。MATLAB可以直接把MEX文件视为它的内建函数进行调用。MEX文件是动态链接的子例程,MATLAB解释器可以自动载入并执行它。MEX文件主要有以下用途: 对于大量现有的C或者Fortran程序可以无须改写成MATLAB专用的M文件格式而在MATLAB中执行。 对于那些MATLAB运算速度过慢的算法,可以用C或者Frotran语言编写以提高效率。
列表类占用的内存数倍于数据本身占用的内存,Python自带的列表类会储存每一个元素的数据信息,数据类型信息,数据大小信息等。这是因为Python语言是一种可以随时改变变量类型的动态类型语言,而C语言和Fortran语言是静态类型语言,静态类型语言一般会在建立变量前先定义变量,并且不可以修改变量的变量类型。总的来说,numpy模块有以下两个优点:
最近写的程序需要使用很多OpenGL的API,但是我对OpenGL的认识就停留在多年前写Minecraft模组时的简单了解。因此借此机会打算系统的学习一遍OpenGL,浅窥计算机图形学一隅。由于本学习笔记只是记录个人的学习过程,因此内容会有一定偏向性,并且也难免有错漏,还请各路大神不吝赐教。同时不建议以这系列文章作为初学材料,若是初学建议看更专业、全面的书籍。另外,本文虽不要求有计算机图形学基础,但是需要有一定的数学基础(主要是线性代数),过于基础的数学不会展开描述。
流程控制是python语法很重要的一个分支,主要包括我们经常用到的判断语句、循环语句以及各种表达式,这也是上一篇文章没有介绍表达式的原因,在这篇文章中会更加系统全面的讲解这三方面的基础知识。
领取专属 10元无门槛券
手把手带您无忧上云