一:基本原理 膨胀与腐蚀是图像形态学两个基本操作之一,传统的代码实现都是基于二维窗口卷积模式,对于正常的3x3窗口要八次与运算,而基于一维级联方式先X方向后Y方向只需要4次与运算即可。对于结构元素比较
数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。
图像的二值形态学处理,是利用集合论的思想,能够简化图像数据,保持基本形状特征,除去不相干的结构,此外还能并行实现。
OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于 BSD 许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。相比于 PIL 库来说 OpenCV 更加强大, 可以做更多更复杂的应用,比如人脸识别等。
算法:梯度运算是图像的膨胀图像减去腐蚀图像的操作,获取原始图像中前景图像的边缘,寻找图像中的极大区域和极小区域,比如用大一圈的图像减去小一圈的图像得到边缘的信息。
腐蚀与膨胀是形态学滤波的两个基本运算,通过腐蚀和膨胀两种运算可以实现多种功能,主要如下:
1、halcon软件提供的是快速的图像处理算法解决方案,不能提供相应的界面编程需求,需要和VC++结合起来构造MFC界面,才能构成一套完成的可用软件。 2、机器视觉在工业上的需求主要有二维和三维方面的 二维需求方面有:⑴识别定位;(2)OCR光学字符识别;(3)一维码、二维码识别及二者的结合;(4)测量类(单目相机的标定);(5)缺陷检测系列;(6)运动控制,手眼抓取(涉及手眼标定抓取等方面) 三维需求方面:(1)摄像机双目及多目标定(2)三维点云数据重构 3、要成为一名合格的机器视觉工程师必须具备以下三个方面的知识 (1)图像处理涉及以下几大领域: A、图像处理的基本理论知识(图像理论的基础知识) B、图像增强(对比度拉伸、灰度变换等) C、图像的几何变换(仿射变换,旋转矩阵等) D、图像的频域处理(傅里叶变换、DFT、小波变换、高低通滤波器设计) E、形态学(膨胀、腐蚀、开运算和闭运算以及凸壳等) F、图像分割(HALCON里的Blob分析) G、图像复原 H、运动图像 I、图像配准(模板匹配等) J、模式识别(分类器训练,神经网络深度学习等) 比较好的参考书籍有 经典教材:冈萨雷斯的《数字图像处理》及对应的MATLAB版 杨丹等编著《MATLAB图像处理实例详解》 张铮等编著《数字图像处理与机器视觉——Visual C++与MATLAB实现》
OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等。
之前写过一篇博文:opencv中初学者必须了解的5个函数-灰度化、模糊、Canny边缘检测、膨胀和侵蚀,是用C++ OpenCV实现的,对应代码如下:
本篇文章目的将为你详细罗列 Python OpenCV 的学习路线与重要知识点。核心分成 24 个小节点,全部掌握,OpenCV 入门阶段就顺利通过了。
膨胀与腐蚀是数学形态学在图像处理中最基础的操作。在笔者之前的文章《图像的卷积(滤波)运算(一)——图像梯度》、《图像的卷积(滤波)运算(二)——高斯滤波》具体介绍了图像卷积\滤波的具体的概念与操作,图像的膨胀与腐蚀其实也是一种类似的卷积操作。其卷积操作非常简单,对于图像的每个像素,取其一定的邻域,计算最大值/最小值作为新图像对应像素位置的像素值。其中,取最大值就是膨胀,取最小值就是腐蚀。
数学形态学是一门建立在集论基础上的学科,是几何形态学分析和描述的有力工具。数学形态学的蓬勃发展,其并行快速,易于硬件实现,目前已经在计算机视觉、信号处理与图像分析、模式识别等方面得到了极为广泛的应用。
表1 图像处理操作按处理对象数量分类表格
目前基本实现了入门级图像处理的基本几个算法,接下来也就是最后两个非常简单的算法,这里只简单介绍,搞定之后,就可以在上面几个算法上实现各种其他应用,明天应该会把文档、源码整理好,谢谢大家支持。
可以直接去https://github.com/murtazahassan/Learn-OpenCV-cpp-in-4-Hours/blob/main/Resources/test.png地址直接下载到。
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
表示B平移z后得到的结果,若平移后的结果包含于A,则我们记录下z点,所有满足上述条件的z点组成的集合就是A被B腐蚀后的结果。表示为:
图像处理是利用计算机对图像进行去噪、增强、复原、重建、编码、压缩、几何变换、分割,提取特征等的理论、方法和技术。图像处理中,输入的是低质量的图像,输出的是改善质量后的图像。
先来谈一下怎样才能学好Verilog这个问题。有人说学Verilog很难,好像比C语言还要难学。有一定难度是真的,但并没有比别的语言更难学。我们刚开始学C语言的时候也觉得C语言很难,直到我们把思维方式转变过来了,把微机原理学好了,能模拟CPU的运行方式来思考问题了,就会发现C语言也没那么难了。所以这里面存在一个思维方式的转换的过程。这对于学Verilog来说也是一样的,只不过Verilog比C语言还要更加底层,我们只掌握了CPU的思维模式还不行,还需要再往下学一层“硬件电路的思维模式”,才能更好的掌握硬件编程语言。
我在两年前的博客里曾经写过 SSE图像算法优化系列七:基于SSE实现的极速的矩形核腐蚀和膨胀(最大值和最小值)算法 一文,通过SSE的优化把矩形核心的腐蚀和膨胀做到了不仅和半径无关,而且速度也相当的快,当时在被博文的评论里有博友提出了如下的问题:
表示B平移z后得到的结果,若平移后的结果和A的交集不为空,则我们记录下z点,所有满足上述条件的z点组成的集合就是A被B膨胀后的结果。表示为:
航空测量是对地形地貌进行测量的一种高效手段。生成地形三维形貌一直是地球学,测量学的研究重点。但对于城市,森林,等独特地形来说,航空测量会受到影响。因为土地表面的树,地面上的房子都认为的改变了地貌,可以认为是地貌上的噪声点。设计一种有效的手段去除地面噪声对地形测量的影响显得非常重要。这种工作可以认为是一种特殊的点云分割,一般情况下点云分割的目标是去除地面,而这种方法需要在不使用地面平整假设的前提下获得地面。
1、通过简单的数据输入可以计算出摄像机和靶纸安装位置关系,进而为选择相机提供可靠的参考。
算法:开运算是先将图像腐蚀,再对腐蚀的结果进行膨胀,与腐蚀相似,但与腐蚀相比,具有基本保持原始图像大小不变的优点。开运算可以用于去噪、计数等,比如在纤细处分离物体、平滑较大物体的边界的同时并不明显改变其面积。闭运算是先将图像膨胀、后腐蚀的运算,可以关闭前景物体内部的小孔,也去除物体上的小黑点,还将不同的前景图像进行连接。闭运算平滑边界的同时不明显改变其面积。
一、图像模糊 1、模糊原理 Smooth/Blur 是图像处理中最简单和常用的操作之一 使用该操作的原因之一就为了给图像预处理时候减低噪声 使用Smooth/Blur操作其背后是数学的卷积计算 通常这
算法:图像膨胀是对图像的边界进行扩张。如果图像内两个对象的距离较近,在膨胀过程中,两个对象可能会连在一起。膨胀和腐蚀作用相反,膨胀可以填补分割图像后的空白位置。
开运算一般平滑物体的轮廓、断开较窄的狭颈并消除细的突出物。闭运算同样也会平滑轮廓的一部分,但与开操作相反,它通常会弥合较窄的间断和细长的沟壑,消除小的孔洞,填补轮廓线的中的断裂。
在实际应用中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析、前景检测、字符识别,形状识别。二值化+数学形态学能解决很多计算机识别工程中目标提取的问题。
模糊处理在边沿检测和去噪声方面有较为广泛的应用。OpenCV中提供了4种模糊算法,列举如下:
如图,使用图像腐蚀进行去噪,但是为压缩噪声。 对腐蚀过的图像,进行膨胀处理,可以去除噪声,并保持原样形状。
各位朋友大家好,我是CPP课题组的视觉工程师。这个系列的文章主要介绍计算机视觉尤其是OCR在经济类课题数据采集中的应用以及其实现方法。既是小教程又是学习笔记。
在日常生活中,经常会看到条形码的应用,比如超市买东西的生活,图书馆借书的时候。。。
在现有的基础上,燃气火焰的检测主要是基于火焰颜色特征,由于燃气火焰不同于普通火焰,其中蓝色分量较多,一般的检测方法准确度不够,故采取其他方法来检测火焰,下面主要介绍4个步骤的思路和主要的python代码。
最近研究了一下opencv的 MorphologyEx这个函数的替代功能, 他主要的特点是支持任意形状的腐蚀膨胀,对于灰度图,速度基本和CV的一致,但是 CV没有针对二值图做特殊处理,因此,这个函数对二值图的速度和灰度是一样的,但是这个函数,如果使用的话,估计大部分还是针对二值图像,因此,我对二值图做了特别优化,速度可以做到是CV这个函数的4倍左右。
形态学中常用的方法有膨胀,腐蚀,开运算,闭运算,形态学梯度,顶帽,黑帽和击中击不中,大多以膨胀和腐蚀为基础操作,需要注意的是膨胀和腐蚀都是对图像中的高亮部分(二值图白色部分)处理起作用,如果是白色背景黑色目标要做取反操作,否则得到的结果是相反的。进入正题,技巧与应用场景介绍:
积分图来源与发展 积分图是Crow在1984年首次提出,是为了在多尺度透视投影中提高渲染速度。随后这种技术被应用到基于NCC的快速匹配、对象检测和SURF变换中、基于统计学的快速滤波器等方面。积分图是一种在图像中快速计算矩形区域和的方法,这种算法主要优点是一旦积分图首先被计算出来我们可以计算图像中任意大小矩形区域的和而且是在常量时间内。这样在图像模糊、边缘提取、对象检测的时候极大降低计算量、提高计算速度。第一个应用积分图像技术的应用是在Viola-Jones的对象检测框架中出现。 积分图概念 在积分图(In
关于OpenCV形态学使用基础可以查看公众号免费的OpenCV视频教程,其中有详细介绍,本篇文章主要介绍形态学中一些实用但是容易被忽略的技巧与演示。
膨胀和腐蚀是图像处理中常用的形态学操作,用于改变图像的形状和结构。在 OpenCV 中,膨胀和腐蚀是基于结构元素的像素操作,可以用于图像增强、边缘检测、图像分割等多个领域。本文将以膨胀和腐蚀操作为中心,为你介绍使用 OpenCV 进行形态学操作的基本步骤和实例。
其中,左侧是Robert算子的X方向梯度、右侧是Y方向梯度。 自定义Robert算子实现如下:
二值图像(Binary Image)是指将图像上的每一个像素只有两种可能的取值或灰度等级状态,人们经常用黑白、B&W、单色图像表示二值图像。二值图像是指在图像中,灰度等级只有两种,也就是说,图像中的任何像素不是0就是1,再无其他过渡的灰度值。
近段时间,做了一些关于对象发现的工作。主要内容是从图片中识别出液滴,并统计其数量。在这个过程中遇到了一些问题,也发现了几种相关的解决方案,在这里与大家分享一下。
形态学梯度能够描述目标的边界,根据图像腐蚀和膨胀与原图之间的关系计算得到,形态学梯度可以分为基本梯度、内部梯度和外部梯度。基本梯度是原图像膨胀后图像和腐蚀后图像间的差值图像,内部梯度图像是原图像和腐蚀后图像间的差值图像,外部梯度是膨胀后图像和原图像间的差值图像。
V={0,1,2}时,D4=无穷大,D8=无穷大,Dm=无穷大;V={2,3,4}时,D4=无穷大,D8=4,Dm=5。
覆盖区域的最大相素值提取,并代替锚点位置的相素。显然,这一最大化操作将会导致图像中的亮区开始”扩展” (因此有了术语膨胀 dilation )。对上图采用膨胀操作我们得到:
浏览OpenCV相关文章时看到了《基于OpenCV的图像阴影去除》,源码也是用pytyon实现的,分析了一下其原理,这篇我们用OpenCV的C++版来实现一下。
图像的膨胀(Dilation)和腐蚀(Erosion)是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域。其中膨胀类似于“领域扩张”,将图像中的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大;腐蚀类似于“领域被蚕食”,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。
领取专属 10元无门槛券
手把手带您无忧上云