在写STL的时候,我就意识到了缺少了一篇数据结构。 提到数据结构,很多学生可能会想到学校里上的数据结构的课,教的那些数组、链表、栈、队列、树、图等
上次在面试时被面试官问到学了哪些数据结构,那时简单答了栈、队列/(ㄒoㄒ)/~~其它就都想不起来了,今天有空整理了一下几种常见的数据结构,原来我们学过的数据结构有这么多~
(1)和次优二叉树相对,二叉排序树是一种动态树表。其特点是,树点的结构通常不是一次生成的,而是在查找过程中,当树中不存在关键字等于给定值的结点时再进行插入。
树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。先从整体上认识下二叉树及其他各种树的区别和用途。
平衡二叉树 对于二叉查找树,尽管查找、插入及删除操作的平均运行时间为O(logn),但是它们的最差运行时间都是O(n),原因在于对树的形状没有限制。 平衡二叉树又称为AVL树,它或者是一棵空树,或者是有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左右子树的深度之差的绝对值不超过1。二叉树的的平衡因子BF为:该结点的左子树的深度减去它的右子树的深度,则平衡二叉树的所有结点的平衡因子为只可能是:-1、0和1 一棵好的平衡二叉树的特征: (1)保证有n个结点的树的高度为O(logn) (2)容易维护,
主要是分治思想,大事化小,把其化成带有根节点的A A的左子树,A的右子树 ,再分别判断左子树与右子树的最大深度, 取两者最大值+1即二叉树的最大深度
上篇教程学院君给大家介绍了二叉排序树,并且提到理想情况下,二叉排序树的插入、删除、查找时间复杂度都是 O(logn),非常高效,而且它是一种动态的数据结构,插入删除性能和查找一样好,不像之前提到的二分查找,虽然查找性能也是 O(logn),但是需要先对线性表进行排序,而排序的最好时间复杂度也是 O(nlogn),所以二分查找不适合动态结构的排序。
二叉树知识回顾——【树】之二叉树(C语言)(含图解)_半生瓜のblog-CSDN博客
平衡二叉树也叫自平衡二叉搜索树(Self-Balancing Binary Search Tree),所以其本质也是一颗二叉搜索树,不过为了限制左右子树的高度差,避免出现倾斜树等偏向于线性结构演化的情况,所以对二叉搜索树中每个节点的左右子树作了限制,左右子树的高度差称之为平衡因子,树中每个节点的平衡因子绝对值不大于1,此时二叉搜索树称之为平衡二叉树。自平衡是指,在对平衡二叉树执行插入或删除节点操作后,可能会导致树中某个节点的平衡因子绝对值超过1,即平衡二叉树变得“不平衡”,为了恢复该节点左右子树的平衡,此时需要对节点执行旋转操作。
题目:输入一颗二叉树的根结点,判断该树是不是平衡二叉树。 如果某二叉树中任意结点的左右子树的高度相差不超过1,那么它就是一棵平衡二叉树。 分析:所谓平衡二叉树就是要确保每个结点的左子树与右子树的高度差在-1到1之间。 由于之前一题已经给出了二叉树高度的计算方法,因此本题最直观的思路就是分别计算每个结点的左子树高和右子树高,从而判断一棵树的所有结点是否均为平衡二叉树。 /** * 题目:输入一颗二叉树的根结点,判断该树是不是平衡二叉树。 * 如果某二叉树中任意结点的左右子树的高度相差不超过1,那么
在线索二叉树中,除了左右孩子指针,还添加了两个额外的指针:前驱指针和后继指针。这两个指针分别指向当前节点的前驱节点和后继节点。
这道题中的平衡二叉树的定义是:二叉树的每个节点的左右子树的高度差的绝对值不超过 11,则二叉树是平衡二叉树。
题目:输入一颗二叉树的根结点,判断该树是不是平衡二叉树。 如果某二叉树中任意结点的左右子树的高度相差不超过1,那么它就是一棵平衡二叉树。 分析:所谓平衡二叉树就是要确保每个结点的左子树与右子树的高度差在-1到1之间。 由于之前一题已经给出了二叉树高度的计算方法,因此本题最直观的思路就是分别计算每个结点的左子树高和右子树高,从而判断一棵树的所有结点是否均为平衡二叉树。 上一篇博客中采用了一种较为常规的思路,但由于涉及到重复计算子树的高度,因此性能并不好,接下来提出一种从下而上,依次判断每个子树是否为
二叉排序树又称二叉查找树或二叉搜索树。 它一棵空树或者是具有下列性质: (1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值; (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值; (3)左、右子树也分别为二叉排序树; 查找的时候总是从根节点进行比较然后逐级往下进行。 由于它是一种树形结构,所以相对于顺序存储结构来说,进行插入或者删除操作的时候效率较高,但是其查找性能是是不确定的(依赖于书的形状),例如如果每个节点都只有左孩子而没有右,则查找相当于从头找到尾,而如果每个节点的左右孩子
二叉树的顺序存储结构就是用一组地址连续的存储单元依次自上而下、自左而右存储完全二叉树上的节点元素,即将完全二叉树上编号为i的节点元素存储在某个数组下边为i-1的分量中。
在上一篇《无死角“盘”它!二分查找树》中提到了:平衡二叉树的目的就是使得平均查找长度最短。那么这里就引出两个问题:
导读:3 月 12 日是一年一度的植树节。旨在宣传保护森林,并动员群众参加植树造林活动。说到树,程序猿们肯定不陌生,趁着这个植树节到来之时普及一下程序猿们经常遇见的树。
为了避免树的高度增长过快,降低二叉排序树的性能,我们规定在插入和删除二叉树结点时,要保证任意结点的左、右子树高度差的绝对值不超过1,将这样的二叉树称为平衡二叉树,简称平衡树(AVL树)。定义结点左子树和右子树的高度差为该结点的平衡因子,则平衡二叉树结点的平衡因子的值只可能是-1、0或1。
今日偷懒,在家忙着码代码,所以就分享一道简单点的题目~在之前的系列中,我们已经学习了二叉树的深度以及DFS,如果不会可以先查看之前的文章。今天我们将对其进行应用,直接看题目:
首先要理解一个概念:什么是平衡二叉树,如果某二叉树中任意的左右子树深度相差不超过1,那么他就是一颗平衡二叉树。如下图:
输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
众所周知,红黑树是非常经典,也很非常重要的数据结构,自从1972年被发明以来,因为其稳定高效的特性,40多年的时间里,红黑树一直应用在许多系统组件和基础类库中,默默无闻的为我们提供服务,身边有很多同学经常问红黑树是怎么实现的,所以在这里想写一篇文章简单和大家聊聊下红黑树
二叉搜索树一定程度上可以提高搜索效率,但是当原序列有序时,例如序列 A = {1,2,3,4,5,6},构造二叉搜索树如图 1.1。依据此序列构造的二叉搜索树为右斜树,同时二叉树退化成单链表,搜索效率降低为 O(n)。
公历 3 月 12 日是一年一度的植树节。旨在宣传保护森林,并动员群众参加植树造林活动。说到树,程序猿们肯定不陌生,趁着这个植树节到来之时普及一下程序猿们经常遇见的树。
在前几篇中我们主要介绍了底层是通过数组、链表、哈希表等方式实现的集合,今天我们来学习一种新的集合叫做TreeMap。TreeMap底层并不是通过哈希表的方式实现的,而是采用了一种全新的数据结构,红黑树结构存储的。下面我们简单介绍一下红黑树的相关知识。
输入一棵节点数为 n 二叉树,判断该二叉树是否是平衡二叉树。在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树 平衡二叉树(Balanced Binary Tree),具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
二叉排序树(Binary Sort Tree)又称二叉查找树、二叉搜索树。它或者是一棵空树;或者是具有下列性质的二叉树:
。影响时间复杂度的因素即为二叉树的高,为了尽量避免树中每层上只有一个节点的情况,这里引入平衡二叉树。
参考资料 《算法(java)》 — — Robert Sedgewick, Kevin Wayne 《数据结构》 — — 严蔚敏 2017年度原创IT博客评选:http://www.itbang.me/goVote/203 引子 近日, 为了响应市政府“全市绿化”的号召, 身为共青团员的我决定在家里的后院挖坑种二叉树,以支援政府实现节能减排的伟大目标,并进一步为实现共同富裕和民族复兴打下坚实
相信不少同学和我一样,在刚学完数据结构后开始刷算法题时,遇到递归的问题总是很头疼,而一看解答,却发现大佬们几行递归代码就优雅的解决了问题。从我自己的学习经历来看,刚开始理解递归思路都很困难,更别说自己写了。
《算法(java)》 — — Robert Sedgewick, Kevin Wayne
平衡二叉树最早是由两位前苏联数学家G.M.Adelsen-Velskii和E.M.Landis提出的。这是一个高度平衡的二进制位。那么满足哪两点才是平衡二叉树?怎样才能不破坏二叉树的平衡性?
平衡二叉树(Balanced binary tree)又称为AVL树,是一种特殊的二叉排序树,且左右子树的高度之差的绝对值不超过1.
特点是物理位置上的邻接关系来表示结点的逻辑关系,具有可以随机存取表中的任一结点的,但插入删除不方便
今天的博客是在上一篇博客的基础上进行的延伸。上一篇博客我们主要聊了二叉排序树,详情请戳《二叉排序树的查找、插入与删除》。本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,AVL是发明平衡二叉树的两个科学家的名字的缩写,在此就不做深究了。其实平衡二叉树就是二叉排序树的一种,比二叉排序树多了一个平衡的条件。在一个平衡二叉树中,一个结点的左右子树的深度差不超过1。 本篇博客我们就依照平衡二叉树的特点,在创建二叉排序树的同时要保证结点的左右子树的深度差不超过1的规则。当我们往二叉排序树中插入结点时,
出现背景 前文已经研究过普通的二叉树, 为什么要用二叉树呢?因为二叉树的结构可以实现二分法查找的效果。
索引这个词,相信大多数人已经相当熟悉了,很多人都知道MySQL的索引主要以B+树为主,但是要问到为什么用B+树,恐怕很少有人能把前因后果讲述的很完整。本文就来从头到尾介绍下数据库的索引。
泰隆银行笔试记录(3.22个别题) 1、平衡二叉树 已知一平衡二叉树,考察插入一个结点后,某一结点的叶子结点 知识点: 平衡二叉树性质: 可以是空树 若不是空树,任何一个结点的左子树与右子树都是平衡二叉树,并且高度之差不超过1 失衡子树的调整方法: 左旋 右旋 2.考察分布式缓存穿透 给选项,选择怎样会出现穿透 3.子类与父类私有属性的继承 子类不能继承父类的私有属性 4.在面向对象语言中,重载与覆盖的区别 重载:是指允许存在多个同名函数,而这些函数的参数表不同(或许参数个
树(Tree)是一种抽象数据类型(ADT)或是实现这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的圣诞树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
版权声明:本文为博主原创文章,遵循 CC 4.0 BY 版权协议,转载请附上原文出处链接和本声明。
面试过程中,多多少少会问一点数据结构(二叉树)的问题,今天我们来复习一下二叉树的相关问题,文末总结。
趣味算法(第二版)读书笔记: day1: 序章|学习的方法和目标. day2:算法之美|打开算法之门与算法复杂性 day3.算法之美|指数型函数对算法的影响实际应用 day4.数学之美|斐波那契数列与黄金分割 day5.算法基础|贪心算法基础 day6.算法基础||哈夫曼树 day7.算法基础||堆栈和队列
索引,相信大多数人已经相当熟悉了,很多人都知道 MySQL 的索引主要以 B+ 树为主,但是要问到为什么用 B+ 树,恐怕很少有人能把前因后果讲述完整。本文就来从头到尾介绍下数据库的索引。
领取专属 10元无门槛券
手把手带您无忧上云