我一直都不理解,为什么要有大小端区分,尤其是小端,总是会忘记,因为他不符合人类的思维习惯,但存在即为合理,存在就有他存在的价值。这里有一个比较合理的解释:计算机中电路优先处理低位字节,效率比较高,因为计算机都是从低位开始的,所以计算机内部处理都是小端字节序。但是我们平常读写数值的方法,习惯用大端字节序,所以除了计算机的内部,其他场景大都是大端字节序,比如:网络传输和文件储存时都是用的大端字节序。
在C语言中,变量的定义是分配存储空间的过程。一般的,每个变量都具有其独有的存储空间,那么可不可以在同一个内存空间中存储不同的数据类型(不是同事存储)呢?
我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
本文主要的目的是,针对一些在C中不常注意的重点进行解释,加深对于C语言的了解及运用
这篇文章主要讲的是内存的物理机制的原理是什么?以及我们在开发中定义的变量是怎样存储的。认真看完才会觉得很简单,如果只是粗略的看,那就啥都学不到。
类对象模型是一种编程概念,用于描述和实现面向对象编程(OOP)中的类和对象。在这个模型中,类定义了对象的结构和行为,包括数据成员(属性)和成员函数(方法)。对象是类的实例,具有类的所有属性和方法。类对象模型支持封装、继承和多态等OOP特性,使得代码更加模块化、可重用和易于维护。通过类对象模型,程序员可以创建复杂的软件系统,提高开发效率和代码质量。
最近在从头重写 MobileIMSDK 的TCP版,自已组织TCP数据帧时就遇到了字节序大小端问题。所以,借这个机会单独整理了这篇文章,希望能加深大家对字节序问题的理解,加强对IM这种基于网络通信的程序在数据传输这一层的知识掌控情况。
16位汇编第六讲汇编指令详解第第三讲 1.十进制调整指令 1. 十进制数调整指令对二进制运算的结果进行十进制调整,以得到十进制的运算结果 2.
一般一个16位(双字节)的数据,比如 FF1A (16进制) 那么高位字节就是FF,低位是1A
但首先我们需要知道的是,在C语言中,数据在内存中的存储是以变量的形式存储的。每个变量都有一个地址,指向内存中的特定位置。变量的值存储在这个地址对应的内存单元中。不同类型的变量在内存中占据不同大小的空间,例如整数型变量通常占据4个字节的空间,而字符型变量通常占据1个字节的空间。所以说实际上数据的存储也是由于类型所占字节不同而改变的。
经过前面博客的介绍,我们的C语言初阶已经学完了。现在我们可以进入更深层次的C语言世界了,而本文是我们进阶的首篇文章,主要是介绍各种数据在内存中的存储情况,比如有符号char的最大值是多少、整型数据与浮点型数据在内存的存储方式有何不同等,学会这些知识能增加我们的内功,真正做到了然于心。🚀🚀🚀
关于整数在内存中的存储形式,在博主之前写的文章里已经介绍了!友友们可以去点下面链接去看,这里就不过多介绍。
https://www.cnblogs.com/lrh-xl/p/5351182.html
联合体(union)是允许一个变量通过不同的接口访问内存的一种数据类型,表示一个变量可以存储不同类型的值,而枚举是使用enum关键字定义一组相关且互斥的整形常量集合。本章阿森将和你学习联合体类型的声明,特点,有关大小的计算,还有枚举类型的声明,优点和使用。文章干货满满!学习起来吧😃!
在C语言中我们可以通过struct关键字定义结构类型,结构中的字段占据连续的内存空间,每个结构体占用的内存大小都相同,因此可以很容易地定义结构数组。和C语言一样,在NumPy中也很容易对这种结构数组进行操作。
什么是计算机大小端?简单来说,大小端(Endian)是指数据存储或者传输时的字节序,大小端分大端和小端。 所谓大端(Big-Endian)模式,是指数据的低位(就是权值较小的后面那几位)保存在内存的高地址中,而数据的高位,保存在内存的低地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放。 所谓小端(Little-Endian)模式,是指数据的低位保存在内存的低地址中,而数 据的高位保存在内存的高地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部
如何看待内存空间的视角:int的类型创建一个变量(a),占了4个字节, float类型创建一个变量(b),同样也只是占了仅仅4个字节的空间。但是给变量a的是格式符%d是一个整形,而给变量b的是格式符%f是一个单精度浮点型。
正数的原、反、补码都相同 对于整形来说:数据存放内存中其实存放的是补码。 为什么呢 ? 在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理,同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
前言:现实世界是一个充斥着数据的世界,万事万物身上都充满着数据的存在,比如我们人身上就有身高,体重,年龄等数据。 我们所学的C语言就是用来处理现实中的中的问题,自然而然C语言中必有存储这些数据的盒子,每种数据都有与之对应的盒子,这样方便管理与存储,接下来我们就来深究数据在内存中的存储。
计算机的发展是很迅猛的,短短的几十年,社会发生了天翻地覆的变化。这也离不开处理器芯片的高速发展。下面就简单的罗列一下处理器芯片的发展历程。
在ASCII码中,通过一个65的偏移量,使得一部分无符号数指向A-Za-z。 在C语言中,通过char类型的转换规范,可以将对应的01序列转换为英文输出。
需要注意的是:学习过Java的同学们知道有String(字符串类型),但是c语言没有,我们使用字符数组来代替(char arr [ ]).
我们知道一个变量的创建是要在内存中开辟空间的。而空间的大小是根据对应的变量的类型而决定的。
指针对于C来说太重要。然而,想要全面理解指针,除了要对C语言有熟练的掌握外,还要有计算机硬件以及操作系统等方方面面的基本知识。所以本文尽可能的通过一篇文章完全讲解指针。
这不是我第一次写关于C指针的文章了,只是因为指针对于C来说太重要,而且随着自己编程经历越多,对指针的理解越多,因此有了本文。然而,想要全面理解指针,除了要对C语言有熟练的掌握外,还要有计算机硬件以及操作系统等方方面面的基本知识。所以我想通过一篇文章来尽可能的讲解指针,以对得起这个文章的标题吧。
许多操作系统使用8位的块作为最小可寻址内存单元,我们把内存看做一个很大的数组,最小可寻址单元的大小就是一个数组成员的大小。
C的整型算数运算总是至少以缺省整型类型的精度来进行的。为了获得这个精度,表达式中的**字符和短整型操作数( char 属于整型家族 )**在使用之前被转换为普通整型,这种转换称为整型提升。
上面这行代码,~的优先级最高,首先肯定是对a进行按位取反,然后是+的优先级较高,所以执行4+1 =5,最后执行右移操作。
二进制最高位为1时表示负数,为0时表示正数。 **原码:**一个正数,转换为二进制位就是这个正数的原码。负数的绝对值转换成二进制位然后在高位补1就是这个负数的原码。 举例说明: int类型的 3 的原码是 11B(B表示二进制位), 在32位机器上占四个字节,那么高位补零就得: 00000000 00000000 00000000 00000011 int类型的 -3 的绝对值的二进制位就是上面的 11B 展开后高位补零就得: 10000000 00000000 00000000 00000011 **反码:**正数的反码就是原码,负数的反码等于原码除符号位以外所有的位取反。 举例说明: int类型的 3 的反码是 00000000 00000000 00000000 00000011 和原码一样没什么可说的 int类型的 -3 的反码是 11111111 11111111 11111111 11111100 除开符号位 所有位 取反 **补码:**正数的补码与原码相同,负数的补码为 其原码除符号位外所有位取反(得到反码了),然后最低位加1. 还是举例说明: int类型的 3 的补码是: 00000000 00000000 00000000 00000011 int类型的 -3 的补码是 11111111 11111111 1111111 11111101 就是其反码加1
使用这些内置类型就意味着开辟内存的大小和看待内存空间的视角,是C语言中必不可少的。
char unsigned char signed char short unsigned short [int] signed short [int] int unsigned int signed int long unsigned long [int] signed long [int] 或许有朋友会疑问,为什么char是整型家族的?它不是字符型的吗,那是因为
(简单来说)因为: 计算机的CPU只有加法器,但是在**二进制中,正数和负数的表示方法不同。如果我们想统一加法和减法的操作,就需要将所有的数(无论正负)都转换为一种表示方式**,【补码就是其中的一种表示方式。】 当都转化为补码这一种形式的时候,我们就可以统一加法和减法操作,从而简化了计算机的运算过程。
持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第2天,点击查看活动详情
c语言里的结构体其实和面向对象的编程语言里的对象很类似,它可以描述我们现实世界里的绝大部分事物。举个例子,如果要描述一辆汽车,可以把汽车这个对象封装起来,定义一个Car结构体,而汽车包含了很多信息,有型号、价格、油量、性能、甚至汽车的构造等等,将这些属性封装到汽车Car结构体中,不仅让人一目了然,更重要的是便于管理,想要修改或增删某些属性时会变得很简单。结构体可以嵌套,我们又可以定义一个更大的结构体“交通工具”,交通工具又可以包含汽车、飞机、火车、自行车等等。以此类推,这样有了结构体世界很多事物都可以在代码世界里进行描述了,是不是很妙?
小端 ( little-endian):低位字节在前,高位字节在后。大端(Big-Endian),则反之。具体而言,就是为了说清楚,CPU架构中1字(word)的存储顺序。计算机内存中数据自然流动的顺序就是:低位先来,高位紧随其后
目前市面上大部分书籍说的都是数字的字节表示形式,按照二进制的方式进行存储。我就理所当然的认为是按照下面方式进行存储的。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/117843.html原文链接:https://javaforall.cn
位运算是指按二进制进行的运算。在系统软件中,常常需要处理二进制位的问题。C语言提供了6个位操作运算符。这些运算符只能用于整型操作数,即只能用于带符号或无符号的char,short,int与long类型。
C语言既具有高级语言的特点,又具有低级语言的特性,如支持位运算就是其具体体现。这是因为,C语言最初是为取代汇编语言设计系统软件而设计的,因此C语言必须支持位运算等汇编操作。位运算就是对字节或字内的二进制数位进行测试、抽取、设置或移位等操作。其操作对象不能是float、double、long double等其他数据类型,只能是char和int类型。 C语言提供如下表格的六种位运算符,其中,只有按位取反运算符为单目运算符,其他运算符都是双目运算符。
能够自己实践实践阿。引用自:http://blog.chinaunix.net/u1/33888/showart_334911.html
我们前面已经了解了浮点数和整数的存储形式是完全不一样的,但是在C语言中是可以用int类型的数据接收到float类型的数据的(会发生精度丢失)
本文展示了10个C语言的迷题以及答案,而且有相当的一些例子可能是我们日常工作可能会见得到的。通过这些迷题,希望你能更了解C语言。
这是我13年前创作和发表在互联网上的文章,这么多年过去了,这篇文章仍然在到处传播。现在贴回Linuxer公众号。 全文目录: C语言嵌入式系统编程修炼之道——背景篇 C语言嵌入式系统编程修炼之道——软件架构篇 1.模块划分 2.多任务还是单任务 3.单任务程序典型架构 4.中断服务程序 5.硬件驱动模块 6.C的面向对象化 总结 C语言嵌入式系统编程修炼之道——内存操作篇 1.数据指针 2.函数指针 3.数组vs.动态申请 4.关键字const 5.关键字volatile 6.CPU字长与存储器位宽不一致处
上一个专题我们详细的分享了c语言里面的结构体用法,读者在看这些用法的时候,可以一边看一边试验,掌握了这些基本用法就完全够用了,当然在以后的工作中,如果有遇到了更高级的用法,我们可以再来总结学习归纳。好了,开始我们今天的主题分享。
✨作者:@平凡的人1 ✨专栏:《C语言从0到1》 ✨一句话:凡是过往,皆为序章 ✨说明: 过去无可挽回, 未来可以改变 ---- 🌹感谢您的点赞与关注,同时欢迎各位有空来访我的🍁平凡舍 ---- 文章目录 @[toc] ✍前言 🍁数据类型 🍁数据类型的基本分类 🍁整形在内存中的存储 原码、反码、补码 🍁大小端介绍 🍁练习 🚩结语 ✍前言 HelloHello,大家好,今天我们来一起来探索数据的存储问题,我将大概用2篇博客来写这块的内容,今天,利用这一篇先来完成一部分,介绍数据类型,整形
C语言标准规定:sizeof(long)>=sizeof(int)>=sizeof(short).
内存由大量内存单元组成,内存单元大小为1个字节(1字节包含8个二进制位), 每个内存单元都有一个编号,更专业的说法是每一个内存单元都有一个地址,我们在编写汇编代码或编译器把用高级语言所写的程序编译成汇编指令时,如果要读写内存,就必须在指令中指定内存地址,这样CPU才知道它要存取哪个或哪些内存单元。
每一种数据类型的大小不同,这也就决定了它所存储的数据范围也就不同,就比如char和int所存储的数据范围就不同,那么具体能存储多少呢?相信大家看完本本章内容,就能对每一种数据是怎么存储在内存中的,就会有了更加深刻的认识。
"大端"和"小端"这两个术语的由来据说源于《格列佛游记》(Gulliver's Travels)一书,作者是爱尔兰作家乔纳森·斯威夫特(Jonathan Swift),书中描绘了两个敌对国家之间的争议,该争议起源于吃蛋的方式。
领取专属 10元无门槛券
手把手带您无忧上云