1. 仿函数实际就是一个类,这里类实例化出来的对象叫做函数对象,下面命名空间wyn中的两个仿函数就分别是两个类,在使用时直接用类进行实例化对象,然后让对象调用()的运算符重载,这样我们看到的调用形式就非常像普通的函数调用,但实际上这里并不是函数调用,而是仿函数实例化出来的对象调用了自己的operator()重载成员函数。
本文通过底层实现优先级队列的部分接口,构建优先级队列的步骤图等详细讲解的方式,使读者对优先级队列有深刻的理解. 建议先学习数据结构中有关 "堆"的知识,否则理解起来是有些难度的.
https://blog.csdn.net/weixin_72357342/article/details/134908529?spm=1001.2014.3001.5502
冒泡排序的时间复杂度为O(N2),空间复杂度为O(1);qsort排序的时间复杂度为 O(nlogn),空间复杂度为O(logn),而今天所讲到的堆排序在时间与空间复杂度上相比于前两种均有优势
堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看作一棵完全二叉树的数组对象。
c语言中的小小白-CSDN博客c语言中的小小白关注算法,c++,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.
如果有一个关键码的集合K = { k1,k2 ,k3 ,…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:ki <=k(2i+1 )且 ki<=k(2i+2) ( ki >=k(2i+1 )且 ki>=k(2i+2) ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
优先级队列是一种特殊的队列,其中的元素都被赋予了优先级。元素的优先级决定了它们在队列中的顺序。在优先级队列中,元素按照优先级从高到低的顺序出队列。
我们把二叉堆的根节点称之为堆顶。根据二叉堆的特性,堆顶要嘛是整个堆中的最大元素,要嘛是最小元素。
priority_queue (优先级队列) 是一种容器适配器,它与 queue 共用一个头文件,其底层结构是一个堆,并且默认情况下是一个大根堆,所以它的第一个元素总是它所包含的元素中最大的,并且为了不破坏堆结构,它也不支持迭代器:
顺序结构指的是利用数组来存储,一般只适用于表示完全二叉树,原因如上图,存储不完全二叉树会造成空间上的浪费,有的人又会问,为什么图中空的位置不能存储呢??原因是我们需要根据数组的下标关系才能访问到对应的节点!!有以下两个下标关系公式:
🎬 鸽芷咕:个人主页 🔥 个人专栏:《速学数据结构》 《C语言进阶篇》
堆排序,顾名思义是一个利用堆来完成排序的一个操作。在之前,小编在[C语言学习系列–>【关于qsort函数的详解以及它的模拟实现】] 谈到冒泡排序,但是冒泡排序的时间复杂度(O(n2))着实有点高,堆排序的时间复杂度相对低很多,O(log2N)。
上次才讲完堆的相关问题:二叉树顺序结构与堆的概念及性质(c语言实现堆 那今天就接着来进行堆的主要两方面的应用:堆排序和TOP-K问题
要编写一个堆项目,首先要明确我们想要达到的效果是什么样,下面我将用vs2022编译器来为大家演示一下堆程序运行时的样子:
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
🥳🥳前面我们学习了利用堆进行排序,今天我们将继续介绍利用堆解决前k个最值的问题,Topk问题(在N个数中找出最大的前k个)在实际生活中也非常常见,💥💥比如店外卖时评分最高的前十家店铺,玩王者时英雄战力前十名等与排序排名有关的应用。
这里先简单介绍一下优先级队列priority_queue:优先队列是一种容器适配器,默认的情况下,如果没有为特定的priority_queue类实例化指容器类,则使用vector (deque 也是可以的),需要支持随机访问迭代器,以便始终在内部保持堆结构
上次介绍了树,二叉树的基本概念结构及性质:二叉树数据结构:深入了解二叉树的概念、特性与结构
目录 前言 堆的概念和结构 堆的实现 接口展示 堆结构创建 堆的初始化 堆的销毁 入堆 数据向上调整 入堆测试 出堆 向下调整数据 出堆测试 堆顶数据获取 堆数据个数 判断空堆 堆数据打印 堆源码 ---- 前言 ---- 本章主要讲解: 数据结构中的堆的知识以及实现 堆的概念和结构 ---- 概念: 将所有元素按完全二叉树的顺序存储方式存储在一个一维数组中并以一定的数据要求存储 如果所有父节点的数据大于最大子节点的数据,称为大堆;如果所有父节点的数据小于最小子节点的数据,称为小堆
我们上一篇文章学了queue(队列),那优先级队列也是在<queue>里面的:
这两种方案呢其实都可以,但在这里建议大家选择从1开始。 为什么呢? 因为如果我们认为根节点的层次是0,那要表示空树就是-1了。 而如果从1开始,那空树的层次就是0,空树是0 是不是好像更符合我们正常的逻辑啊。 当然只是建议,两种都可以。
如果有一个数字集合,并把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,且在逻辑结构(即二叉树)中,如果每个父亲节点都大于它的孩子节点那么此堆可以称为大堆;那么如果每个父亲节点都小于它的孩子节点那么此堆可以称为小堆。 堆的性质:
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面学到高阶数据结构如红黑树等会用到三叉链。
然后要遍历数据,最坏的情况是每个元素都与堆顶比较并排序,需要堆化n次 每次最差都下调高度次,而高度为log(k),所以是O(nlog(k)) 因此总复杂度是O(k+nlog(k)),也就是O(nlogk)
树的概念:树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 有一个特殊的结点,称为根结点,根节点没有前驱结点 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继 因此,树是递归定义的。
树有很多种表示方式,如:双亲表示法,孩子表示法、孩子兄弟表示法等等。这里简单了解其中最常用的孩子兄弟表示法。
节点的度:一个节点含有的子树的个数。 叶子节点/终端节点:度为0的节点。 分支节点/非终端节点:度不为0的节点。 父节点/双亲节点:含有至少一个子节点的节点。 子节点:一个节点含有的子树的根节点,称为该节点的子节点。 兄弟节点:具有相同父节点的节点,互称为兄弟节点。 树的度:一棵树中最大节点的度。 节点的层次:从跟开始定义,根为第1层,根的子节点为第二层,…,以此类推。 数的高度或深度:树中节点的最大层次。 堂兄弟节点:父节点在同一层的节点。 节点的祖先:从根到该节点所经分支上的所有节点。 子孙:以某一节点为根节点的子树中所有节点都是该节点的子孙。 森林:一颗及一颗以上的树组成的集合。
堆(Heap)与栈(Stack)是开发人员必须面对的两个概念,在理解这两个概念时,需要放到具体的场景下,因为不同场景下,堆与栈代表不同的含义。一般情况下,有两层含义: (1)程序内存布局场景下,堆与栈表示两种内存管理方式; (2)数据结构场景下,堆与栈表示两种常用的数据结构。
堆(Heap)与栈(Stack)是开发人员必须面对的两个概念,在理解这两个概念时,需要放到具体的场景下,因为不同场景下,堆与栈代表不同的含义。一般情况下,有两层含义:
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
树是一种非线性的数据结构,它是由n(n >= 0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,叶朝下。
我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
给你一个顺序表或数组(一串数据),通常来说建堆有两种方法一种堆向上调整算法,一种堆向下调整算法建堆也就是筛选法建堆。
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《linux深造日志》 《高效算法》
树是一种非线性的数据结构,它是一种由有限个结点组成的具有层状结构的集合,把它叫做树是因为它看起来像一颗倒挂起来的树,叶子朝下,根root朝上。
在上一篇我们已经讲过了堆是什么东西,我们已经知道堆有大堆和小堆两种形式,堆排序的想法正是借助它的这个特点诞生的,例如:
优先级队列 priority_queue 是容器适配器中的一种,常用来进行对数据进行优先级处理,比如优先级高的值在前面,这其实就是初阶数据结构中的 堆,它俩本质上是一样东西,底层都是以数组存储的完全二叉树,不过优先级队列 priority_queue 中加入了 泛型编程 的思想,并且属于 STL 中的一部分
堆是一种特殊的树形数据结构,具有完全二叉树的特性。在堆中,父节点的值总是大于或等于(大顶堆)或小于或等于(小顶堆)其子节点的值。堆通常用于实现优先队列,其中每个元素都有一个优先级,优先级最高的元素总是位于堆的根节点。堆的插入和删除操作的时间复杂度都是O(log n),因此堆是一种高效的数据结构。此外,堆还可以用于实现内存管理,例如垃圾回收和内存分配等。
栈与队列是两种重要的特殊线性表,从结构上讲,两者都是线性表,但从操作上讲,两者支持的基本操作却只是线性表操作的子集,是操作受限制的线性表。栈与队列两者最大的区别在于,栈元素后进先出(LIFO,Last In First Out),而队列元素先进先出(FIFO,First In First Out)。此外,针对队列这一特殊数据结构,有时需考虑队列元素的优先级的关系,即根据用户自定义的优先级排序,出队时优先弹出优先级更高(低)的元素,优先队列能更好地满足实际问题中的需求,而在优先队列的各种实现中,堆是一种最高效的数据结构。本文分别介绍了顺序栈、链式栈、链式队列和循环队列以及对应与前两种队列实现的最大/最小优先级队列,还有两种堆结构,最大堆与最小堆的基本结构,并给出了相应的C++类代码实现。
只需要从第二个数8开始每次读取一个数据都向上调整为堆,那么读完整个数组就可以得到一个堆啦~🥰🥰
文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题
把所有的元素按照完全二叉树的形式储存在一维数组中,如果该二叉树满足父节点小于等于子节点,叫做小堆;如果该二叉树满足父节点大于等于子节点,叫做大堆。
二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。 最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。 将元素存储到数组中后,可以根据之前写的二叉树文章中的性质 对树进行还原。 假设i为节点在数组中的下标则有 1. 如果 i 为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2 2. 如果2 * i + 1 小于节点个数,则节点i存在左孩子下标,且为2 * i + 1,否则没有左孩子;如果2 * i + 2小于节点个数,则节点i存在右孩子下标,且为2 * i + 2,否则没有右孩子。
如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: <= 且 <= ( >= 且 >= ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。 堆的性质: 堆中某个节点的值总是不大于或不小于其父节点的值; 堆总是一棵完全二叉树。
领取专属 10元无门槛券
手把手带您无忧上云